Skip to main content

Recovery of Recombinant Proteins from Plants Using Aqueous Two-Phase Partitioning Systems: An Outline

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1129))

Abstract

Transgenic plants producing recombinant proteins are a potential low-cost substitute for complex bioreactors. However, the development of new robust downstream processes to improve protein recovery and isolation from plant feedstock is critical to promote this new technique because downstream processing costs typically contribute to more than 80 % of the total cost. Polishing separation platforms for protein purification, such as chromatography and membrane filtration, have been well established, while little attention has been allocated to initial concentration and separation procedures. In this chapter, application of aqueous two-phase partitioning (ATPP), as an attractive alternative to traditional processes for recovering and isolating target proteins from plant green tissues or seeds, as well as the main advances reported in literature concerning ATPP for the isolation and purification of proteins from plant feedstock are reviewed. The potential application of ATPP as an integrated extraction and isolation step and isolation step after extraction or protein characterization method is discussed separately. The connection of ATPP with traditional protein separation processes is discussed. The separation mechanisms of ATPP are explained based on surface properties of proteins and polymer systems. Finally, the future trends in applying ATPP for protein separation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kusnadi AR, Nikolov ZL, Howard JA (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 56:473–484

    Article  CAS  PubMed  Google Scholar 

  2. Evangelista RL, Kusnadi AR, Howard JA et al (1998) Process and economic evaluation of the extraction and purification of recombinant β-glucuronidase from transgenic corn. Biotechnol Prog 14:607–614

    Article  CAS  PubMed  Google Scholar 

  3. Oscar A, Rito-Palomares M (2010) Aqueous two-phase systems strategies for the recovery and characterization of biological products from plants. J Sci Food Agric 90:1385–1392

    Article  Google Scholar 

  4. Menkhaus TJ, Bai Y, Nikolov ZL et al (2004) Considerations for the recovery of recombinant proteins from plants. Biotechnol Prog 20:1001–1014

    Article  CAS  PubMed  Google Scholar 

  5. Albertsson PA (1986) Partition of cell particles and macromolecules, 3rd edn. Wiley, New York

    Google Scholar 

  6. Zaslavsky A (1995) Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. Marcel Dekker Inc, New York

    Google Scholar 

  7. Gu Z, Glatz CE (2007) A method for three-dimensional protein characterization and its application to a complex plant (Corn) extract. Biotechnol Bioeng 97:1158–1169

    Article  CAS  PubMed  Google Scholar 

  8. Asenjo JA, Andrews BA (2004) Is there a rational method to purify proteins? From expert systems to proteomics. J Mol Recognit 17:236–247

    Article  CAS  PubMed  Google Scholar 

  9. Zhu Z, Hughes KW, Huang L et al (1994) Expression of human α-interferon cDNA in transgenic rice plants. Plant Cell Tissue Organ Cult 36:197–204

    Article  CAS  Google Scholar 

  10. Huang LF, Liu YK, Lu C-A et al (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res 14:569–581

    Article  CAS  PubMed  Google Scholar 

  11. Hood EE, Love R, Lane J et al (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719

    Article  CAS  PubMed  Google Scholar 

  12. Howard JA, Nikolov ZL, Hood EE (2011) Enzyme production systems for biomass conversion. In: Hood EE, Nelson P, Powell R (eds) Plant biomass conversion. Wiley, Ames, IA, pp 219–245

    Google Scholar 

  13. Gu Z, Glatz CE (2007) Recovery of recombinant dog gastric lipase from corn endosperm extract. Sep Sci Technol 42:1195–1213

    Article  CAS  Google Scholar 

  14. Kusnadi AR, Hood EE, Witcher DR et al (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnol Prog 14:149–155

    Article  CAS  PubMed  Google Scholar 

  15. Azzoni AR, Kusnadi AR, Everson AM et al (2002) Recombinant aprotinin produced in transgenic corn seed: extraction and purification studies. Biotechnol Bioeng 80:268–276

    Article  CAS  PubMed  Google Scholar 

  16. Zhong GY, Peterson D, Delaney DE (1999) Commercial production of aprotinin in transgenic maize seeds. Mol Breed 5:345–356

    Article  CAS  Google Scholar 

  17. Kusnadi AR, Evangelista RL, Nikolov ZL et al (1998) Processing of transgenic corn seed and its effect on the recovery of recombinant β-glucuronidase. Biotechnol Bioeng 60:43–50

    Google Scholar 

  18. Roussel A, Miled N, Berti-Dupuis L (2002) Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor. J Biol Chem 277:2266–2274

    Article  CAS  PubMed  Google Scholar 

  19. Huang JM, Wu LY, Yalda D et al (2002) Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Res 11:229–239

    Article  CAS  PubMed  Google Scholar 

  20. Zhang D, Nandi S, Bryan P et al (2010) Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr Purif 74:69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nandi S, Suzuki YA, Huang JM et al (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163:713–722

    Article  CAS  Google Scholar 

  22. Balasubramaniam D, Wilkinson C, Cott KV et al (2003) Tobacco protein separation by aqueous two-phase extraction. J Chromatogr A 989:119–129

    Article  CAS  PubMed  Google Scholar 

  23. Ross KC, Zhang CM (2010) Separation of recombinant β-glucuronidase from transgenic tobacco by aqueous two-phase extraction. Biochem Eng J 49:343–350

    Article  CAS  Google Scholar 

  24. Holler C, Zhang CM (2008) Purification of an acidic recombinant protein from transgenic tobacco. Biotechnol Bioeng 99:902–909

    Article  CAS  PubMed  Google Scholar 

  25. Holler C, Vaughan D, Zhang CM (2007) Polyethyleneimine precipitation versus anion exchange chromatography in fractionating recombinant β-glucuronidase from transgenic tobacco extract. J Chromatogr A 1142: 98–105

    Article  CAS  PubMed  Google Scholar 

  26. Platis D, Labrou NE (2009) Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract. Biotechnol J 4:1320–1327

    Article  CAS  PubMed  Google Scholar 

  27. Menkhaus TJ, Glatz CE (2005) Antibody capture from corn endosperm extracts by packed bed and expanded bed adsorption. Biotechnol Prog 21:473–485

    Article  CAS  PubMed  Google Scholar 

  28. Silva ME, Franco TT (2000) Purification of soybean peroxidase (Glycine max) by metal affinity partitioning in aqueous two-phase systems. J Chromatogr B 743:287–294

    Article  Google Scholar 

  29. Costa M, Cunha MT, Cabral JMS et al (2000) Scale-up of recombinant cutinase recovery by whole broth extraction with PEG-phosphate aqueous two-phase. Bioseparation 9:231–238

    Article  CAS  PubMed  Google Scholar 

  30. Raghavarao K, Guinn MR, Todd P (1998) Recent development in aqueous two phase extraction in bioprocessing. Sep Purif Methods 27:1–49

    Article  CAS  Google Scholar 

  31. Engel S, Barak Z, Chipman DM (2000) Purification of acetohydroxy acid synthase by separation in an aqueous two-phase system. J Chromatogr B 743:281–286

    Article  CAS  Google Scholar 

  32. Marcos JC, Fonseca LP, Ramalho MT et al (1999) Partial purification of penicillin acylase from Escherichia coli in poly(ethylene glycol)–sodium citrate aqueous two-phase systems. J Chromatogr B 734:15–22

    Article  CAS  Google Scholar 

  33. Li Y, Beitle RR (2002) Protein purification via aqueous two-phase extraction and immobilized metal affinity chromatography: effectiveness of salt addition to enhance selectivity and yield of GFPuv. Biotechnol Prog 18:1054–1059

    Article  CAS  PubMed  Google Scholar 

  34. Hassinen C, Kohler K, Veide A (1994) Polyethylene glycol-potassium phosphate aqueous two-phase systems: insertion of short peptide units into a protein and its effects on partitioning. J Chromatogr A 668:121–128

    Article  CAS  PubMed  Google Scholar 

  35. Rito MP, Lyddiatt A (2000) Practical implementation of aqueous two-phase processes for protein recovery from yeast. J Chem Technol Biotechnol 75:632–638

    Article  Google Scholar 

  36. Marcos JC, Fonseca LP, Ramalho MT et al (1998) Variation of penicillin acylase partition coefficient with phase volume ratio in poly (ethylene glycol)–sodium citrate aqueous two phase systems. J Chromatogr B 711:295–299

    Article  CAS  Google Scholar 

  37. Olivera AN, Lagomarsino G, Andrews BA et al (2004) Effect of electrostatic energy on partitioning of proteins in aqueous two-phase systems. J Chromatogr B 807:81–86

    Article  Google Scholar 

  38. Andrews BA, Schmidt AS, Asenjo JA (2005) Correlation for the partition behavior of proteins in aqueous two-phase systems: effect of surface hydrophobicity and charge. Biotechnol Bioeng 90:380–390

    Article  CAS  PubMed  Google Scholar 

  39. Yamahara K, Ota H, Kuboi R (1998) Characterization of stress responsive behaviors of proteins. J Chem Eng Jpn 31:795–803

    Article  CAS  Google Scholar 

  40. Hachem F, Andrews BA, Asenjo JA (1996) Hydrophobic partitioning of proteins in aqueous two-phase systems. Enzyme Microb Technol 19:507–517

    Article  CAS  Google Scholar 

  41. Franco TT, Andrews AT, Asenjo JA (1996) Use of chemically modified proteins to study the effect of a single protein property on partitioning in aqueous two-phase systems, effect of surface hydrophobicity. Biotechnol Bioeng 49:300–308

    Article  CAS  PubMed  Google Scholar 

  42. Sarmento MJ, Pires MJ, Cabral JMS (1997) Liquid–liquid extraction of a recombinant protein (cytochrome b5) from an impure extract using aqueous two-phase systems. Bioprocess Eng 16:295–297

    CAS  Google Scholar 

  43. Oscar A, Rito-Palomares M (2008) Processing of soybean (Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins. J Chem Technol Biotechnol 83:286–293

    Article  Google Scholar 

  44. Ibarra-Herrera C, Oscar A, Rito-Palomares M (2011) Application of an aqueous two-phase systems strategy for the potential recovery of a recombinant protein from alfalfa (Medicago sativa). Sep Purif Technol 77:94–98

    Article  CAS  Google Scholar 

  45. Oscar A, Glatz CE, Rito-Palomares E (2009) Characterization of green-tissue protein extract from alfalfa (Medicago sativa) exploiting a 3-D technique. J Sep Sci 32:3223–3231

    Article  Google Scholar 

  46. Huddleston J, Abelaira JC, Wang RD et al (1996) Protein partition between the different phases comprising poly (ethylene glycol)-salt aqueous two-phase systems, hydrophobic interaction chromatography and precipitation: a generic description in terms of salting-out effects. J Chromatogr B 680:31–41

    Article  CAS  Google Scholar 

  47. Yano K, Hasegawa T, Kuboi R (1994) Characterization of surface properties of heat shock proteins for the separation using aqueous two-phase systems. J Chem Eng Jpn 27: 808–814

    Article  CAS  Google Scholar 

  48. Oscar A, Rito-Palomares M, Glatz CE (2010) Coupled application of aqueous two-phase partitioning and 2D-electrophoresis for characterization of soybean proteins. Sep Sci Technol 45:2210–2225

    Article  Google Scholar 

  49. Luther JR, Glatz CE (1995) Genetically engineered charge modification to enhance protein separation in aqueous two-phase systems: charge directed partitioning. Biotechnol Bioeng 46:62–68

    Article  CAS  PubMed  Google Scholar 

  50. Fan WY, Glatz CE (1999) Charged protein partitioning in aqueous polyethylene glycol dextran two-phase systems: salt effects. Sep Sci Technol 34:423–438

    Article  CAS  Google Scholar 

  51. Fan WY, Bakir U, Glatz CE (1998) Contribution of protein charge to partitioning in aqueous two-phase systems. Biotechnol Bioeng 59:461–470

    Article  CAS  PubMed  Google Scholar 

  52. Franco TT, Andrews AT, Asenjo JA (1996) Use of chemically modified proteins to study the effect of a single protein property on partitioning in aqueous two-phase systems, effect of surface charge. Biotechnol Bioeng 49: 309–315

    Article  CAS  PubMed  Google Scholar 

  53. Rito MP, Cueto L (2000) Effect of biological suspensions on the position of the bimodal curve in aqueous two-phase systems. J Chromatogr B 743:5–12

    Article  Google Scholar 

  54. Baijpai R, Harve R, Tipton P (1995) Effect of nucleic acid contamination on partitioning of proteins in two-phase PEG-dextran system. Appl Biochem Biotechnol 54:193–205

    Article  Google Scholar 

  55. Chen JP (1992) Partitioning and separation of alpha lactalbumin and beta lactoglobulin in PEG/potassium phosphate aqueous two phase systems. J Ferment Bioeng 73:140–147

    Article  CAS  Google Scholar 

  56. Su ZG, Feng XL (1999) Process integration of cell disruption and aqueous two-phase extraction. J Chem Technol Biotechnol 74:284–288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gu, Z. (2014). Recovery of Recombinant Proteins from Plants Using Aqueous Two-Phase Partitioning Systems: An Outline. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics