Skip to main content

(Hyper)thermophilic Enzymes: Production and Purification

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1129))

Abstract

The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where “normal” proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158

    Article  CAS  Google Scholar 

  2. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci U S A 95:6854–6859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Miller SL, Lazcano A (1995) The origin of life – did it occur at high temperatures? J Mol Evol 41:689–692

    Article  CAS  PubMed  Google Scholar 

  4. Forterre P (1996) A hot topic: the origin of hyperthermophiles. Cell 85:789–792

    Article  CAS  PubMed  Google Scholar 

  5. Brock TD, Brock KM, Belly RT et al (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living in low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  CAS  PubMed  Google Scholar 

  6. Brock TD, Freeze H (1969) Thermus aquaticus, a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Stetter KO (2006) History of discovery of the first hyperthermophiles. Extremophiles 10:357–362

    Article  PubMed  Google Scholar 

  8. Koutsopoulos S, van der Oost J, Norde W (2005) Temperature dependant structural and functional features of a hyperthermostable enzyme using elastic neutron scattering. Proteins 61:377–384

    Article  CAS  PubMed  Google Scholar 

  9. Chiaraluce R, van Der Oost J, Lebbink JH et al (2002) Persistence of tertiary structure in 7.9 M guanidinium chloride: the case of endo-beta-1,3-glucanase from Pyrococcus furiosus. Biochemistry 41:14624–14632

    Article  CAS  PubMed  Google Scholar 

  10. Gueguen YW, Voorhorst GB, van der Oost J et al (1997) Molecular and biochemical characterization of an endo-β-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 272:31258–31264

    Article  CAS  PubMed  Google Scholar 

  11. van Lieshout JF, Gutiérrez ON, Vroom W et al (2012) Thermal stabilization of an endoglucanase by cyclization. Appl Biochem Biotechnol 167:2039–2053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kaper T, Verhees CH, Lebbink JH et al (2001) Characterization of beta-glycosylhydrolases from Pyrococcus furiosus. Methods Enzymol 330:329–346

    Article  CAS  PubMed  Google Scholar 

  13. Lebbink JH, Kaper T, Kengen SW et al (2001) beta-Glucosidase CelB from Pyrococcus furiosus: production by Escherichia coli, purification, and in vitro evolution. Methods Enzymol 330:364–379

    Article  CAS  PubMed  Google Scholar 

  14. van Lieshout J, Faijes M, Nieto J et al (2004) Hydrolase and glycosynthase activity of endo-1,3-beta-glucanase from the thermophile Pyrococcus furiosus. Archaea 1:285–292

    Article  PubMed Central  PubMed  Google Scholar 

  15. Kengen SW, Tuininga JE, Verhees CH et al (2001) ADP-dependent glucokinase and phosphofructokinase from Pyrococcus furiosus. Methods Enzymol 331:41–53

    Article  CAS  PubMed  Google Scholar 

  16. Verhees CH, Koot DG, Ettema TJ et al (2002) Biochemical adaptations of two sugar kinases from the hyperthermophilic archaeon Pyrococcus furiosus. Biochem J 366:121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  17. de Geus D, Hartley AP, Sedelnikova SE et al (2003) Cloning, purification, crystallization and preliminary crystallographic analysis of galactokinase from Pyrococcus furiosus. Acta Crystallogr D Biol Crystallogr 59:1819–1821

    Article  PubMed  Google Scholar 

  18. Verhees CH, Huynen MA, Ward DE et al (2001) The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus is a unique glycolytic enzyme that belongs to the cupin superfamily. J Biol Chem 276:40926–40932

    Article  CAS  PubMed  Google Scholar 

  19. Akerboom J, Turnbull AP, Hargreaves D et al (2003) Purification, crystallization and preliminary crystallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus. Acta Crystallogr Sect D Biol Crystallogr 59:1822–1833

    Article  Google Scholar 

  20. Levisson M, van der Oost J, Kengen SW (2007) Characterization and structural modeling of a new of thermostable esterase from Thermotoga maritima. FEBS J 274:2832–2842

    Article  CAS  PubMed  Google Scholar 

  21. Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Siebers B, Brinkmann H, Dörr C et al (2001) Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J Biol Chem 276:28710–28718

    Article  CAS  PubMed  Google Scholar 

  23. Wolterink-van LS, van Eerde A, Siemerink MA et al (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 403:421–430

    Article  Google Scholar 

  24. van der Oost J, Voorhorst WG, Kengen SW et al (2001) Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 268: 3062–3068

    Article  PubMed  Google Scholar 

  25. Machielsen R, van der Oost J (2006) Production and characterization of a thermostable l-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. FEBS J 273:2722–2729

    Article  CAS  PubMed  Google Scholar 

  26. Kengen SWM, Bikker FJ, Hagen WR et al (2001) Characterization of a catalase-peroxidase from the hyperthermophilic archaeon Archaeoglobus fulgidus. Extremophiles 5:323–332

    Article  CAS  PubMed  Google Scholar 

  27. Kengen SWM, van der Oost J, de Vos WM (2003) Molecular characterisation of H2O2-forming NADH oxidases from Archaeoglobus fulgidus. Eur J Biochem 270:2885–2894

    Google Scholar 

  28. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  29. Sambrook J, Russell DW (2006) Transformation of E. coli by electroporation. Cold Spring Harbor protocols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. doi:10.1101/pdb.prot3933

    Google Scholar 

  30. Sambrook J, Russell DW (2006) SDS-polyacrylamide gel electrophoresis of proteins Cold Spring Harbor protocols. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. doi:10.1101/pdb.prot4540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Koutsopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Falcicchio, P., Levisson, M., Kengen, S.W.M., Koutsopoulos, S., van der Oost, J. (2014). (Hyper)thermophilic Enzymes: Production and Purification. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics