Skip to main content

Measuring Binding Constants of His-Tagged Proteins Using Affinity Chromatography and Ni-NTA-Immobilized Enzymes

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1129))

Abstract

Affinity chromatography is one way to measure the binding constants of a protein–ligand interaction. Here we describe a method of measuring a binding constant using Ni-NTA resin to immobilize a His-tagged enzyme and the method of frontal analysis. While other methods of immobilization are possible, using the strong affinity interaction between His-tagged proteins and Ni-NTA supports results in a fast, easy, and gentle method of immobilization. Once the affinity support is created, frontal analysis can be used to measure the binding constant between the protein and various analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  2. Loun B, Hage DS (1992) Characterization of thyroxine–albumin binding using high-performance affinity chromatography. I. Interactions at the warfarin and indole sites of albumin. J Chromatogr 579:225–235

    Article  CAS  PubMed  Google Scholar 

  3. Bertucci C, Bartonlini M, Gotti VA (2003) Drug affinity to immobilized target bio-polymer by high performance liquid chromatography and capillary electrophoresis. J Chromatogr B 797:111–129

    Article  CAS  Google Scholar 

  4. Zhang B, Palcic MM, Schriemer DC et al (2001) Frontal affinity chromatography coupled to mass spectrometry for screening mixtures of enzyme inhibitors. Anal Chem 299:173–182

    CAS  Google Scholar 

  5. Nishikata M (1983) Affinity chromatography of chymotrypsin on a sepharose derivative coupled with a chymostatin analogue. J Biochem 93:73–79

    CAS  PubMed  Google Scholar 

  6. Kasai K, Ishii S (1978) Studies on the interaction of immobilized trypsin and specific ligands by quantitative affinity chromatography. J Biochem 84:1061–1069

    CAS  PubMed  Google Scholar 

  7. Ichinose H, Yoshida M, Kotake T et al (2005) An Exo-β-1,3-galactanase having a novel β-1,3-galactan-binding module from Phanerochaete chrysosporium. J Biochem 280:25820–25829

    CAS  Google Scholar 

  8. Hage DS, Anguizola JA, Jackson AJ et al (2011) Chromatographic analysis of drug interactions in the serum proteome. Anal Methods 3:1449–1460

    Article  CAS  Google Scholar 

  9. Nelson MA, Moser AC, Hage DS (2010) Biointeraction analysis by high-performance affinity chromatography: kinetic studies of immobilized antibodies. J Chromatogr B 878:165–171

    Article  CAS  Google Scholar 

  10. Kortt AA, Oddie GW, Iliades P et al (1997) Nonspecific amine immobilization of ligand can be a potential source of error in BIAcore binding experiments and may reduce binding affinities. Anal Biochem 253:103–111

    Article  CAS  PubMed  Google Scholar 

  11. Wilchek M, Bayer EA (1990) Introduction to avidin-biotin technology. Methods Enzymol 184:5–13

    Article  CAS  PubMed  Google Scholar 

  12. Wilchek M, Miron T (1987) Limitations of n-hydroxy-succinimide esters in affinity chromatography and protein immobilization. Biochemistry 26:2155–2161

    Article  CAS  PubMed  Google Scholar 

  13. Turkova J (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J Chromatogr B 722:11–31

    Article  CAS  Google Scholar 

  14. Gunaratna PC, Wilson GS (1990) Optimization of multienzyme flow reactors for determination of acetylcholine. Anal Chem 62:402–407

    Article  CAS  PubMed  Google Scholar 

  15. Raven EL (2003) Understanding functional diversity and substrate specificity in haem peroxidases: what can we learn from ascorbate peroxidase? Nat Prod Rep 20:367–381

    Article  CAS  PubMed  Google Scholar 

  16. Tweed SA, Loun B, Hage DS (1997) Effects of ligand heterogeneity in the characterization of affinity column by frontal analysis. Anal Chem 69:4790–4798

    Article  CAS  PubMed  Google Scholar 

  17. Arkin M, Lear JD (2001) A new data analysis method to determine binding constants of small molecules to protein using equilibrium analytical ultracentrifugation with absorption optics. Anal Biochem 299:98–107

    Article  CAS  PubMed  Google Scholar 

  18. Fielding L (2007) NMR methods for the determination of protein–ligand dissociation constants. Prog NMR Spectrosc 51:219–242

    Article  CAS  Google Scholar 

  19. Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug–protein interactions. J Chromatogr B 699:499–525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UNK Summer Student Research Program, the UNK Undergraduate Research Fellows Program, and the UNK Chemistry Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette C. Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moser, A.C., White, B., Kovacs, F.A. (2014). Measuring Binding Constants of His-Tagged Proteins Using Affinity Chromatography and Ni-NTA-Immobilized Enzymes. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_30

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics