Skip to main content

Proteomic Analysis of Complex Protein Samples by MALDI–TOF Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1129))

Abstract

MALDI MS has become a technique of considerable impact on many fields, from proteomics to lipidomics, including polymer analysis and, more recently, even low molecular weight analytes due to the introduction of matrix-less ionization techniques (e.g., DIOS) or new matrices such as ionic liquids, proton sponges, and metal nanoparticles. However, protein identification by peptide mass fingerprint (PMF) still remains the main routine application. In the last few years, MALDI MS has played an emerging role in food chemistry especially in detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications, induced by various industrial processes that could be detrimental for food quality and safety. Sample handling and pretreatment can be very different depending on the physical state, liquid or solid, of the analyzed matrices. Here, we describe simple protocols for protein extraction and MALDI MS analysis of liquid (milk) and solid (hazelnuts) samples taken as model. A classic approach based on a preliminary SDS gel electrophoresis separation followed by in-gel digestion and a faster approach based on in-solution digestion of whole samples are described and compared.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mazzei P, Piccolo A (2012) H-1 HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem 132:1620–1627

    Article  CAS  Google Scholar 

  2. Nicolaou N, Xu Y, Goodacre R (2010) Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species. J Dairy Sci 93:5651–5660

    Article  CAS  PubMed  Google Scholar 

  3. Herrero AM (2008) Raman spectroscopy a promising technique for quality assessment of meat and fish: a review. Food Chem 107:1642–1651

    Article  CAS  Google Scholar 

  4. Zambonin CG, Cilenti A, Palmisano F (2002) Solid-phase microextraction and gas chromatography-mass spectrometry for the rapid screening of triazole residues in wine and strawberries. J Chromatogr A 967:255–260

    Article  CAS  PubMed  Google Scholar 

  5. Zambonin CG (2003) Coupling solid-phase microextraction to liquid chromatography. A review. Anal Bioanal Chem 375:73–80

    CAS  PubMed  Google Scholar 

  6. Aresta A, Vatinno R, Palmisano F, Zambonin CG (2006) Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection. J Chromatogr A 1115:196–201

    Article  CAS  PubMed  Google Scholar 

  7. Wang YT, Liu XB, Xiao CX et al (2012) HPLC determination of aflatoxin M-1 in liquid milk and milk powder using solid phase extraction on OASIS HLB. Food Control 28:131–134

    Article  Google Scholar 

  8. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939

    Article  CAS  Google Scholar 

  9. Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  10. Gaso-Sokac D, Kovac S, Dj J (2010) Application of proteomics in food technology and food biotechnology: process development, quality control and product safety. Food Technol Biotechnol 48:284–295

    CAS  Google Scholar 

  11. Aresta A, Calvano CD, Palmisano F, Zambonin CG (2008) Impact of sample preparation in peptide/protein profiling in serum of breast cancer patients by MALDI-TOF Mass spectrometry. J Pharm Biomed Anal 46:157–164

    Article  CAS  PubMed  Google Scholar 

  12. Gaso-Sokac D, Kovac S, Josic D (2011) Use of proteomic methodology in optimization of processing and quality control of food of animal origin. Food Technol Biotechnol 49:397–412

    CAS  Google Scholar 

  13. Calvano CD, Jensen ON, Zambonin CG (2009) Selective extraction of phospholipids from dairy products by micro-solid phase extraction based on titanium dioxide microcolumns followed by MALDI-TOF-MS analysis. Anal Bioanal Chem 394:1453–1461

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs B, Schiller J (2009) Application of MALDI-TOF mass spectrometry in lipidomics. Eur J Lipid Sci Technol 111:83–98

    Article  CAS  Google Scholar 

  15. Calvano CD, Carulli S, Palmisano F (2009) Aniline/α-cyano-4-hydorxycinnamic acid is a highly versatile ionic liquid for matrix assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 23:1659–1668

    Article  CAS  PubMed  Google Scholar 

  16. Calvano CD, De Ceglie C, D’Accolti L, Zambonin CG (2012) MALDI-TOF mass spectrometry detection of extra-virgin olive oil adulteration with hazelnut oil by analysis of phospholipids using an ionic liquid as matrix and extraction solvent. Food Chem 134:1192–1198

    Article  CAS  PubMed  Google Scholar 

  17. Calvano CD, Zambonin CG, Palmisano F (2011) Lipid fingerprinting of Gram-positive lactobacilli by intact cells-matrix-assisted laser desorption/ionization mass spectrometry using a proton sponge based matrix. Rapid Commun Mass Spectrom 25:1757–1764

    Article  CAS  PubMed  Google Scholar 

  18. Monopoli A, Cotugno P, Cortese M, Calvano CD et al (2012) Selective N-alkylation of arylamines with alkyl chloride in ionic liquids: scope and applications. Eur J Org Chem 16:3105–3111

    Article  Google Scholar 

  19. Cioffi N, Colaianni L, Pilolli R, Calvano CD et al (2009) Silver nano-fractals: electrochemical synthesis, XPS characterization and application in LDI-MS. Anal Bioanal Chem 394:1375–1383

    Article  CAS  PubMed  Google Scholar 

  20. Pilolli R, Palmisano F, Cioffi N (2012) Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal Bioanal Chem 402:601–623

    Article  CAS  PubMed  Google Scholar 

  21. Careri M, Bianchi F, Corradini C (2002) Recent advances in the application of mass spectrometry in food-related analysis. J Chromatogr A 970:3–64

    Article  CAS  PubMed  Google Scholar 

  22. Cunsolo V, Muccilli V, Saletti R, Foti S (2011) Applications of mass spectrometry techniques in the investigation of milk proteome. Eur J Mass Spectrom 17:305–320

    Article  CAS  Google Scholar 

  23. Carbonaro M (2004) Proteomics: present and future in food quality and evaluation. Trends Food Sci Technol 15:209–216

    Article  CAS  Google Scholar 

  24. Han JZ, Wang YB (2008) Proteomics: present and future in food science and technology. Trends Food Sci Technol 19:26–30

    Article  CAS  Google Scholar 

  25. Fanton C, Delogu G, Maccioni E et al (1998) Matrix-assisted laser desorption/ionization mass spectrometry in the Dairy Industry 2. The protein fingerprint of ewe cheese and its application to detection of adulteration by bovine milk. Rapid Commun Mass Spectrom 12:1569–1573

    Article  CAS  PubMed  Google Scholar 

  26. Nicolaou N, Xu Y, Goodacre R (2011) MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal Bioanal Chem 399:3491–3502

    Article  CAS  PubMed  Google Scholar 

  27. Cozzolino R, Passalacqua S, Salemi S, Garozzo D (2002) Identification of adulteration in water buffalo mozzarella and in ewe cheese by using whey proteins as biomarkers and matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 37:985–991

    Article  CAS  PubMed  Google Scholar 

  28. Calvano CD, Palmisano F, Zambonin CG (2005) Laser desorption/ionization time-of-flight mass spectrometry of triacylglycerols in oils. Rapid Commun Mass Spectrom 19(10):1315–1320

    Article  CAS  PubMed  Google Scholar 

  29. Angeletti R, Gioacchini AM, Seraglia R et al (1998) The potential of matrix-assisted laser desorption/ionization mass spectrometry in the quality control of water buffalo mozzarella cheese. J Mass Spectrom 33:525–531

    Article  CAS  PubMed  Google Scholar 

  30. Calvano CD, De Ceglie C, Monopoli A, Zambonin CG (2012) Detection of sheep and goat milk adulterations by direct MALDI-TOF-MS analysis of milk tryptic digests. J Mass Spectrom 47:1141–1149

    Article  CAS  PubMed  Google Scholar 

  31. Calvano CD, Monopoli A, Loizzo P et al (2013) Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow’s milk. J Agric Food Chem 61:1609–1617

    Article  CAS  PubMed  Google Scholar 

  32. D’Alessandro A, Zolla L, Scaloni A (2011) The bovine milk proteome: cherishing, nourishing and fostering molecular complexity. An interactomics and functional overview. Mol Biosyst 7:579–597

    Article  PubMed  Google Scholar 

  33. Mangé A, Bellet V, Tuaillon E et al (2008) Comprehensive proteomic analysis of the human milk proteome: contribution of protein fractionation. J Chromatogr B Analyt Technol Biomed Life Sci 15:252–256

    Article  Google Scholar 

  34. Liao Y, Alvarado R, Lonnerdal B (2011) Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res 10:1746–1754

    Article  CAS  PubMed  Google Scholar 

  35. Guy PA, Fenaille F (2006) Contribution of mass spectrometry to assess quality of milk-based products. Mass Spectrom Rev 25:290–326

    Article  CAS  PubMed  Google Scholar 

  36. Carulli S, Calvano CD, Palmisano F, Pischetsrieder M (2011) MALDI-TOF MS characterization of glycation products of whey proteins in glucose/galactose model system and lactose-free milk. J Agric Food Chem 59:1793–1803

    Article  CAS  PubMed  Google Scholar 

  37. Lauer I, Foetisch K, Kolarich D et al (2004) Hazelnut (Corylus avellana) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity. Biochem J 383:327–334

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ansari P, Stoppacher N, Baumgartner S (2012) Marker peptide selection for the determination of hazelnut by LC–MS/MS and occurrence in other nuts. Anal Bioanal Chem 402:2607–2615

    Article  CAS  PubMed  Google Scholar 

  39. Poms RE, Capelletti C, Anklam E (2004) Effect of roasting history and buffer composition on peanut protein extraction efficiency. Mol Nutr Food Res 48:459–464

    Article  CAS  PubMed  Google Scholar 

  40. Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Compatibility of plant protein extraction methods with mass spectrometry for proteome analysis. Plant Sci 176:99–104

    Article  CAS  Google Scholar 

  41. Savithiry S, Hari N, Krishnan B et al (2009) An efficient extraction method to enhance analysis of low abundant proteins from soybean seed. Anal Biochem 394:259–268

    Article  Google Scholar 

  42. Knoevenagel E (1898) Condensation von Malondiure mit Aromatiachen Aldehyden durch Ammoniak und Amine. Ber Dtsch Chem Ges 31:2596–2619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosima Damiana Calvano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Calvano, C.D., De Ceglie, C., Zambonin, C.G. (2014). Proteomic Analysis of Complex Protein Samples by MALDI–TOF Mass Spectrometry. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics