Skip to main content

Affinity Chromatography of Proteins on Monolithic Columns

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1129))

Abstract

At present, monolithic stationary phases, because of their morphology, are widely used for development and realization of fast dynamic and static processes based on mass transition between liquid and solid phases. These are liquid chromatography, solid phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including bioaffinity mode, represents a unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.

In this work, the examples of application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator from E. coli cell lysate and Chinese Hamster Ovary cell culture supernatant, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents an original and practically valuable method that can be used in biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tennikova TB, Freitag R (2000) An introduction to monolithic disks as stationary phases for high performance biochromatography. J High Resolut Chrom 23:27–38

    Article  CAS  Google Scholar 

  2. Svec F, Tennikova T, Dayl Z (eds) (2003) Monolithic materials: preparation, properties and application. Elsevier, Amsterdam

    Google Scholar 

  3. Vlakh EG, Tennikova TB (2007) Preparation of methacrylate monoliths. J Sep Sci 30:2801–2813

    Article  CAS  PubMed  Google Scholar 

  4. Buchmeiser MR (2007) Polymeric monolithic materials: syntheses, properties, functionalization and applications. Polymer 48:2187–2198

    Article  CAS  Google Scholar 

  5. Kato M, Sakai-Kato K, Toyo’oka T (2005) Silica sol-gel monolithic materials and their use in a variety of applications. J Sep Sci 28:1893–1908

    Article  CAS  Google Scholar 

  6. Platonova GA, Tennikova TB (2003) Immunoaffinity assays. In: Svec F, Tennikova TB, Deyl Z (eds) Monolithic materials: preparation, properties, and applications. Elsevier, Amsterdam, pp 601–622

    Google Scholar 

  7. Platonova GA, Tennikova TB (2005) Affinity processes realized on high-flow-through methacrylate-based macroporous monoliths. J Chromatogr A 1065:19–28

    Article  CAS  PubMed  Google Scholar 

  8. Mallik R, Hage DS (2006) Affinity monolith chromatography. J Sep Sci 29:1686–1704

    Article  CAS  PubMed  Google Scholar 

  9. Titala KKR, van Beek TA (2010) Bioaffinity chromatography on monolithic supports. J Sep Sci 33:422–438

    Article  Google Scholar 

  10. Sproβ J, Sinz A (2011) Monolithic media for applications in affinity chromatography. J Sep Sci 34:1958–1973

    Google Scholar 

  11. Arrua RD, Igarzabal CIA (2011) Macroporous monolithic supports for affinity chromatography. J Sep Sci 34:1974–1987

    CAS  Google Scholar 

  12. Josic D, Clifton JG (2007) Use of monolithic supports in proteomics technology. J Chromatogr A 1144:2–13

    Article  CAS  PubMed  Google Scholar 

  13. Strancar A, Barut M, Podgornik A, Koselj P, Josic D, Buchacher A (1998) Polymer based supports for fast separation of biomolecules. LC-GC Int 11:660–670

    Google Scholar 

  14. Langlotz P, Kroner KH (1992) Surface-modified membranes as a matrix for protein purification. J Chromatogr 591:107–113

    Article  CAS  PubMed  Google Scholar 

  15. Korol’kov VI, Platonova GA, Azanova VV, Tennikova TB, Vlasov GP (2000) In situ preparation of peptidylated polymers as ready-to-use adsorbents for rapid immunoaffinity chromatography. Lett Pept Sci 7:53–61

    Google Scholar 

  16. Ostryanina ND, Vlasov GP, Tennikova TB (2002) Multifunctional fractionation of polyclonal antibodies by immunoaffinity high-performance monolithic disk chromatography. J Chromatogr A 949:163–171

    Article  CAS  PubMed  Google Scholar 

  17. Gupalova TV, Lojkina OV, Palagnuk VG, Totolian AA, Tennikova TB (2002) Quantitative investigation of the affinity properties of different recombinant forms of protein G by means of high-performance monolithic chromatography. J Chromatogr A 949:185–193

    Article  CAS  PubMed  Google Scholar 

  18. Vlakh EG, Platonova GA, Vlasov GP, Kasper C, Tappe A, Kretzmer G, Tennikova TB (2003) In vitro comparison of complementary interactions between synthetic linear/branched oligo/poly-L-lysines and tissue plasminogen activator by means of high-performance monolithic-disk affinity chromatography. J Chromatogr A 992:109–119

    Article  CAS  PubMed  Google Scholar 

  19. Vlakh E, Ostryanina N, Jungbauer A, Tennikova T (2004) Use of monolithic sorbents modified by directly synthesized peptides for affinity separation of recombinant tissue plasminogen activator (t-PA). J Biotechnol 107:275–284

    Article  CAS  PubMed  Google Scholar 

  20. Vlakh EG, Tappe A, Kasper C, Tennikova TB (2004) Monolithic peptidyl sorbents for comparison of affinity properties of plasminogen activators. J Chromatogr B 810:15–23

    Article  CAS  Google Scholar 

  21. Kasper C, Meringova L, Freitag R, Tennikova T (1998) Fast isolation of protein receptors from streptococci G by means of macroporous affinity disks. J Chromatogr A 798:65–72

    Article  CAS  PubMed  Google Scholar 

  22. Berruex LG, Freitag R, Tennikova TB (2000) Comparison of antibody binding to immobilized group specific affinity ligands in high performance monolith affinity chromatography. J Pharm Biomed Anal 24:95–104

    Article  CAS  PubMed  Google Scholar 

  23. Podgornik H, Podgornik A (2002) Characteristics of LiP immobilized to CIM monolithic supports. Enzym Microb Tech 31:855–861

    Article  CAS  Google Scholar 

  24. Hahn R, Berger E, Pflegerl K, Jungbauer A (2003) Directed immobilization of peptide ligands to accessible pore sites by conjugation with a placeholder molecule. Anal Chem 75:543–548

    Article  CAS  PubMed  Google Scholar 

  25. Ostryanina ND, Il’ina OV, Tennikova TB (2002) Effect of experimental conditions on strong biocomplimentary pairing in high-performance monolithic disk affinity chromatography. J Chromatogr B 770:35–43

    Article  CAS  Google Scholar 

  26. Platonova GA, Pankova GA, Il’ina IY, Vlasov GP, Tennikova TB (1999) Quantitative fast fractionation of a pool of polyclonal antibodies by immunoaffinity membrane chromatography. J Chromatogr A 852:129–140

    Article  CAS  PubMed  Google Scholar 

  27. Jungbauer A, Hahn R (2004) Monoliths for fast bioseparation and bioconversion and their applications in biotechnology. J Sep Sci 27:767–778

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Posebrough NI, Farr AL, Randall PI (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Vlasov GP, Illarionova NG, Izvarina NL, Denisov IG (1985) Star-like carbon chain polymer protein conjugates of biologically active polypeptides. Macromol Chem Phys 9:239–249

    Article  CAS  Google Scholar 

  30. Kent UM (1999) Purification of antibodies using ammonium sulfate fractionation or gel filtration. In: Javois LC (ed) Immunocytochemical methods and protocols, vol 115, Methods in molecular biology. Humana Press Inc., Totowa, NJ, pp 11–18

    Chapter  Google Scholar 

  31. Ngo TT, Lenhoff HM (eds) (1985) Enzyme-mediated immunoassay. Plenum Press, New York, NY

    Google Scholar 

  32. Geerligs HJ, Weiler WJ, Welling GW, Welling-Wester S (1989) The influence of different adjuvants on the immune response to a synthetic peptide comprising amino acid residues 9–21 of herpes simplex virus type 1 glycoprotein D. J Immunol Meth 124:95–102

    Article  CAS  Google Scholar 

  33. Kniter M, Sherman NE (2000) Basic polyacrylamide gel electrophoresis. In: Protein sequencing and identification using tandem mass spectrometry. Wiley, New York, NY, pp 117–146

    Google Scholar 

  34. Rijken DC, Collen D (1981) Thrombolysis with human extrinsic (tissue-type) plasminogen activator in rabbits with experimental jugular vein thrombosis. J Biol Chem 256:7035–7041

    CAS  PubMed  Google Scholar 

  35. Matsou O, Rijken DC, Collen D (1981) Thrombolysis by human tissue plasminogen activator and urokinase in rabbits with experimental pulmonary embolus. Nature 291:590–591

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of Saint-Petersburg State University (research grant ## 12.39.1048.2012, 0.37.682.2013) and Russian Foundation of Basic Researches (grant RFBR #11-03-00829-a) are greatly appreciated. The authors are very grateful to BIA Separations for long-term fruitful cooperation as well as to Drs. N.D. Ivanova (Ostryanina) and O.V. Lojkina for kindly presented results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. B. Tennikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vlakh, E.G., Platonova, G.A., Tennikova, T.B. (2014). Affinity Chromatography of Proteins on Monolithic Columns. In: Labrou, N. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 1129. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-977-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-977-2_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-976-5

  • Online ISBN: 978-1-62703-977-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics