Skip to main content

The Stem-Loop Luciferase Assay for Polyadenylation (SLAP) Method for Determining CstF-64-Dependent Polyadenylation Activity

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

Polyadenylation is an essential cellular process in eukaryotic cells (Edmonds M and Abrams R, J Biol Chem 235, 1142–1149, 1960; Zhao J et al., Microbiol Mol Biol Rev 63, 405–445, 1999; Edmonds M, Progr Nucleic Acid Res Mol Biol 71, 285–389, 2002). For this reason, it has been difficult to examine the functions of specific polyadenylation proteins in vivo. Here, we describe a cell culture assay that allows structure-function experiments on CstF-64, a protein that binds to pre-mRNAs downstream of the cleavage site for accurate and efficient polyadenylation. We also demonstrate that the stem-loop luciferase assay for polyadenylation (SLAP) accurately reflects CstF-64-dependent polyadenylation. This assay could be easily adapted to the study of other important RNA-binding proteins in polyadenylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmonds M, Abrams R (1960) Polynucleotide biosynthesis: formation of a sequence of adenylate units from adenosine triphosphate by an enzyme from thymus nuclei. J Biol Chem 235:1142–1149

    CAS  PubMed  Google Scholar 

  2. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Edmonds M (2002) A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 71: 285–389

    Article  CAS  PubMed  Google Scholar 

  4. Christofori G, Keller W (1998) 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 54:875–889

    Article  Google Scholar 

  5. Takagaki Y, Ryner LC, Manley JL (1989) Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev 3:1711–1724

    Article  CAS  PubMed  Google Scholar 

  6. Gilmartin GM, Nevins JR (1989) An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev 3:2180–2190

    Article  CAS  PubMed  Google Scholar 

  7. Mandel CR, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65:1099–1122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Shi Y, Di Giammartino DC, Taylor D et al (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Moore CL, Chen J, Whoriskey J (1988) Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site requires the AAUAAA sequence for binding. EMBO J 7:3159–3169

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Wilusz J, Shenk T (1988) A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 52:221–228

    Article  CAS  PubMed  Google Scholar 

  11. Chou ZF, Chen F, Wilusz J (1994) Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res 22:2525–2531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. MacDonald CC, Wilusz J, Shenk T (1994) The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNA downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 14:6647–6654

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Takagaki Y, Manley JL (1998) Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 2:761–771

    Article  CAS  PubMed  Google Scholar 

  14. Proudfoot NJ, O’Sullivan J (2002) Polyadenylation: a tail of two complexes. Curr Biol 12:855–857

    Article  Google Scholar 

  15. Minvielle-Sebastia L, Winsor B, Bonneaud N et al (1991) Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol 11:3075–3087

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Dass B, Tardif S, Park JY et al (2007) Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proc Natl Acad Sci U S A 104:20374–20379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Pérez Cañadillas JM, Varani G (2003) Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J 22:2821–2830

    Article  PubMed Central  PubMed  Google Scholar 

  18. Takagaki Y, Manley JL (1997) RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 17:3907–3914

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Takagaki Y, Manley JL (2000) Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 20:1515–1525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bai Y, Auperin TC, Chou CY et al (2007) Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 25: 863–875

    Article  CAS  PubMed  Google Scholar 

  21. Richardson JM, McMahon KW, MacDonald CC et al (1999) MEARA sequence repeat of human CstF-64 polyadenylation factor is helical in solution. A spectroscopic and calorimetric study. Biochemistry 38:1403–1407

    Article  Google Scholar 

  22. Qu X, Pérez Cañadillas JM, Agarawal S et al (2007) The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J Biol Chem 282:2101–2115

    Article  CAS  PubMed  Google Scholar 

  23. Ruepp MD, Schweingruber C, Kleinschmidt N et al (2011) Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function. Mol Biol Cell 22:91–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Maciolek NL, McNally MT (2008) Characterization of Rous sarcoma virus polyadenylation site use in vitro. Virology 374: 468–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lago H, Fonseca SA, Murrau JB et al (1998) Dissecting the key recognition features of the MS2 bacteriophage translational repression complex. Nucleic Acids Res 26:1337–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hockert JA, Hsiang-Jui Y, MacDonald CC (2010) The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation. J Biol Chem 285: 695–704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Valegard K, Murrary JB, Stonehouse NJ et al (1997) The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol 270:724–738

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hockert, J.A., MacDonald, C.C. (2014). The Stem-Loop Luciferase Assay for Polyadenylation (SLAP) Method for Determining CstF-64-Dependent Polyadenylation Activity. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics