Skip to main content

Using Klenow-Mediated Extension to Measure Poly(A)-Tail Length and Position in the Transcriptome

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

The poly(A)-tail that terminates most mRNA and many noncoding RNA is a convenient “hook” to isolate mRNA. However the length of this tail and its position within the primary RNA transcript can also hold diagnostic value for RNA metabolism. In general, mRNA with a long poly(A)-tail is well translated, whereas a short poly(A)-tail can indicate translational silencing. A short poly(A)-tail is also appended to RNA-decay intermediates via the TRAMP complex. A number of approaches have been developed to measure the length and position of the poly(A)-tail. Here, we describe a simple method to “tag” adenylated RNA using the native function of DNA polymerase I to extend an RNA primer on a DNA template in second-strand DNA synthesis. This function can be harnessed as a means to purify, visualize, and quantitate poly(A)-dynamics of individual RNA and the transcriptome en masse.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baker KE, Coller J, Parker R (2004) The yeast Apq12 protein affects nucleocytoplasmic mRNA transport. RNA 10:1352–1358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hector RE, Nykamp KR, Dheur S et al (2002) Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export. EMBO J 21:1800–1810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Izawa S, Kita T, Ikeda K et al (2008) Heat shock and ethanol stress provoke distinctly different responses in 3′-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 414:111–119

    Article  CAS  PubMed  Google Scholar 

  4. Beilharz TH, Preiss T (2007) Widespread use of poly(A) tail length control to accentuate expression of the yeast transcriptome. RNA 13:982–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lackner DH, Beilharz TH, Marguerat S et al (2007) A network of multiple regulatory layers shapes gene expression in fission yeast. Mol Cell 26:145–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Weill L, Belloc E, Bava FA et al (2012) Translational control by changes in poly(A) tail length: recycling mRNAs. Nat Struct Mol Biol 19:577–585

    Article  CAS  PubMed  Google Scholar 

  7. Ortiz-Zapater E, Pineda D, Martinez-Bosch N et al (2012) Key contribution of CPEB4-mediated translational control to cancer progression. Nat Med 18:83–90

    Article  CAS  Google Scholar 

  8. D’Ambrogio A, Nagaoka K, Richter JD (2013) Translational control of cell growth and malignancy by the CPEBs. Nat Rev Cancer 13:283–290

    Article  PubMed  Google Scholar 

  9. Radford HE, Meijer HA, de Moor CH (2008) Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta 1779:217–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Richter JD, Klann E (2009) Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev 23:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Salles FJ, Richards WG, Strickland S (1999) Assaying the polyadenylation state of mRNAs. Methods 17:38–45

    Article  CAS  PubMed  Google Scholar 

  12. Beilharz TH, Preiss T (2009) Transcriptome-wide measurement of mRNA polyadenylation state. Methods 48:294–300

    Article  CAS  PubMed  Google Scholar 

  13. Garneau NL, Sokoloski KJ, Opyrchal M et al (2008) The 3′ untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and Mammalian cells. J Virol 82:880–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Couttet P, Fromont-Racine M, Steel D et al (1997) Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc Natl Acad Sci U S A 94:5628–5633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Charlesworth A, Cox LL, MacNicol AM (2004) Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J Biol Chem 279:17650–17659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Okazaki T, Okazaki R (1969) Mechanism of DNA chain growth. IV. Direction of synthesis of T4 short DNA chains as revealed by exonucleolytic degradation. Proc Natl Acad Sci U S A 64:1242–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Janicke A, Vancuylenberg J, Boag PR et al (2012) ePAT: a simple method to tag adenylated RNA to measure poly(A)-tail length and other 3′ RACE applications. RNA 18:1289–1295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. Biotechniques 36:214–216

    CAS  PubMed  Google Scholar 

  19. Sengupta MS, Low WY, Patterson JR et al (2012) ifet-1 is a broad scale translational repressor required for normal P granule formation in C. elegans. J Cell Sci 126:850–859

    Article  PubMed  Google Scholar 

  20. Minvielle-Sebastia L, Winsor B, Bonneaud N et al (1991) Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol Cell Biol 11:3075–3087

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Yoon OK, Brem RB (2010) Noncanonical transcript forms in yeast and their regulation during environmental stress. RNA 16: 1256–1267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shepard PJ, Choi EA, Lu J et al (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17:761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beck AH, Weng Z, Witten DM et al (2010) 3′-end sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS One 5:e8768

    Article  PubMed Central  PubMed  Google Scholar 

  24. Derti A, Garrett-Engele P, Macisaac KD et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mangone M, Manoharan AP, Thierry-Mieg D et al (2010) The landscape of C. elegans 3′UTRs. Science 329:432–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ulitsky I, Shkumatava A, Jan CH et al (2012) Extensive alternative polyadenylation during zebrafish development. Genome Res 22:2054–2066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jan CH, Friedman RC, Ruby JG et al (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469: 97–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Tucker M, Valencia-Sanchez MA, Staples RR et al (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge members of the Beilharz laboratory for critical discussions. Monash University start-up funds and the Australian Health and Medical Research Council (APP1042851, APP1042848) supported this work, and an Australian Research Fellowship from the Australian Research Council (DP0878224) supported T.H.B.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lee, M.C., Jänicke, A., Beilharz, T.H. (2014). Using Klenow-Mediated Extension to Measure Poly(A)-Tail Length and Position in the Transcriptome. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics