Skip to main content

Deadenylation and Its Regulation in Eukaryotic Cells

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

Messenger RNA deadenylation is a process that allows rapid regulation of gene expression in response to different cellular conditions. The change of the mRNA poly(A) tail length by the activation of deadenylation might regulate gene expression by affecting mRNA stability, mRNA transport, or translation initiation. Activation of deadenylation processes are highly regulated and associated with different cellular conditions such as cancer, development, mRNA surveillance, DNA damage response, and cell differentiation. In the last few years, new technologies for studying deadenylation have been developed. Here we overview concepts related to deadenylation and its regulation in eukaryotic cells. We also describe some of the most commonly used protocols to study deadenylation in eukaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17(3):251–256

    Article  CAS  PubMed  Google Scholar 

  2. Sheets MD, Wickens M (1989) Two phases in the addition of a poly(A) tail. Genes Dev 3(9):1401–1412

    Article  CAS  PubMed  Google Scholar 

  3. Wilusz CJ, Gao M, Jones CL et al (2001) Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA 7(10):1416–1424

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Chen CY, Shyu AB (2003) Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol 23(14):4805–4813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11(2):121–127

    Article  CAS  PubMed  Google Scholar 

  6. Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81(2):179–183

    Article  CAS  PubMed  Google Scholar 

  7. Caponigro G, Parker R (1996) mRNA turnover in yeast promoted by the MATalpha1 instability element. Nucleic Acids Res 24(21):4304–4312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mukherjee D, Gao M, O'Connor JP et al (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21(1–2):165–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Goldstrohm AC, Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9(4):337–344

    Article  CAS  PubMed  Google Scholar 

  10. Thore S, Mauxion F, Seraphin B et al (2003) X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep 4(12):1150–1155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29(5):1017–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Doidge R, Mittal S, Aslam A et al (2012) The anti-proliferative activity of BTG/TOB proteins is mediated via the Caf1a (CNOT7) and Caf1b (CNOT8) deadenylase subunits of the Ccr4-not complex. PLoS One 7(12):e51331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lagnado CA, Brown CY, Goodall GJ (1994) AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 14(12):7984–7995

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20(11):465–470

    Article  CAS  PubMed  Google Scholar 

  15. Zubiaga AM, Belasco JG, Greenberg ME (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15(4):2219–2230

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Ma WJ, Cheng S, Campbell C et al (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271(14):8144–8151

    Article  CAS  PubMed  Google Scholar 

  17. Fan XC, Steitz JA (1998) Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J 17(12):3448–3460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33(22):7138–7150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Westmark CJ, Bartleson VB, Malter JS (2005) RhoB mRNA is stabilized by HuR after UV light. Oncogene 24(3):502–511

    Article  CAS  PubMed  Google Scholar 

  20. Gherzi R, Lee KY, Briata P et al (2004) A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell 14(5):571–583

    Article  CAS  PubMed  Google Scholar 

  21. Moraes KC, Wilusz CJ, Wilusz J (2006) CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA 12(6):1084–1091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Korner CG, Wahle E (1997) Poly(A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease. J Biol Chem 272(16):10448–10456

    Article  CAS  PubMed  Google Scholar 

  23. Lai WS, Kennington EA, Blackshear PJ (2003) Tristetraprolin and its family members can promote the cell-free deadenylation of AU-rich element-containing mRNAs by poly(A) ribonuclease. Mol Cell Biol 23(11):3798–3812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fabian MR, Mathonnet G, Sundermeier T et al (2009) Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 35(6):868–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  26. Sampson VB, Rong NH, Han J et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770

    Article  CAS  PubMed  Google Scholar 

  27. Wakiyama M, Takimoto K, Ohara O et al (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21(15):1857–1862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Robb GB, Brown KM, Khurana J et al (2005) Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12(2):133–137

    Article  CAS  PubMed  Google Scholar 

  29. Nishi K, Nishi A, Nagasawa T et al (2013) Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19(1):17–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Doidge R, Mittal S, Aslam A et al (2012) Deadenylation of cytoplasmic mRNA by the mammalian Ccr4-Not complex. Biochem Soc Trans 40(4):896–901

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki A, Saba R, Miyoshi K et al (2012) Interaction between NANOS2 and the CCR4-NOT deadenylation complex is essential for male germ cell development in mouse. PLoS One 7(3):e33558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Van Etten J, Schagat TL, Hrit J et al (2012) Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 287(43):36370–36383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Maragozidis P, Karangeli M, Labrou M et al (2012) Alterations of deadenylase expression in acute leukemias: evidence for poly(a)-specific ribonuclease as a potential biomarker. Acta Haematol 128(1):39–46

    Article  CAS  PubMed  Google Scholar 

  34. Martinez J, Ren YG, Nilsson P et al (2001) The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J Biol Chem 276(30):27923–27929

    Article  CAS  PubMed  Google Scholar 

  35. Dehlin E, Wormington M, Korner CG, Wahle E (2000) Cap-dependent deadenylation of mRNA. EMBO J 19(5):1079–1086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Balatsos NA, Nilsson P, Mazza C et al (2006) Inhibition of mRNA deadenylation by the nuclear cap binding complex (CBC). J Biol Chem 281(7):4517–4522

    Article  CAS  PubMed  Google Scholar 

  37. Cevher MA, Zhang X, Fernandez S et al (2010) Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. EMBO J 29(10):1674–1687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lehner B, Sanderson CM (2004) A protein interaction framework for human mRNA degradation. Genome Res 14(7):1315–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Devany E, Zhang X, Park JY et al (2013) Positive and negative feedback loops in the p53 and mRNA 3′ processing pathways. Proc Natl Acad Sci U S A 110(9):3351–3356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Udagawa T, Swanger SA, Takeuchi K et al (2012) Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell 47(2):253–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Azzouz N, Panasenko OO, Colau G et al (2009) The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One 4(8):e6760

    Article  PubMed Central  PubMed  Google Scholar 

  42. Lee JE, Lee JY, Trembly J et al (2012) The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet 8(8):e1002901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Meijer HA, Bushell M, Hill K et al (2007) A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res 35(19):e132

    Article  PubMed Central  PubMed  Google Scholar 

  44. Astrom J, Astrom A, Virtanen A (1991) In vitro deadenylation of mammalian mRNA by a HeLa cell 3′ exonuclease. EMBO J 10(10):3067–3071

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Lowell JE, Rudner DZ, Sachs AB (1992) 3′-UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev 6(11):2088–2099

    Article  CAS  PubMed  Google Scholar 

  46. Sachs AB, Deardorff JA (1992) Translation initiation requires the PAB-dependent poly(A) ribonuclease in yeast. Cell 70(6):961–973

    Article  CAS  PubMed  Google Scholar 

  47. Garneau NL, Wilusz CJ, Wilusz J (2008) Chapter 5. In vivo analysis of the decay of transcripts generated by cytoplasmic RNA viruses. Methods Enzymol 449:97–123

    Article  CAS  PubMed  Google Scholar 

  48. Mittal S, Aslam A, Doidge R et al (2011) The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Mol Biol Cell 22(6):748–758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Piao X, Zhang X, Wu L et al (2010) CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells. Mol Cell Biol 30(6):1486–1494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frida E. Kleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhang, X., Kleiman, F.E., Devany, E. (2014). Deadenylation and Its Regulation in Eukaryotic Cells. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics