Skip to main content

Multiplex Analysis of PolyA-Linked Sequences (MAPS): An RNA-Seq Strategy to Profile Poly(A+) RNA

  • Protocol
  • First Online:
Polyadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1125))

Abstract

We summarize 12 experimental methods that have been developed for profiling gene expression by focusing on the 3′-end of poly(A+) mRNA, distilling both common and unique features. Of this family of methods, we provide detailed protocol for MAPS, a method we believe is the simplest and most cost-effective for profiling gene expression and quantifying alternative polyadenylation events by oligo-dT priming followed by random priming and deep sequencing. This method also enables library multiplexing by using a set of bar coding primers during PCR amplification. We also provide a general guideline for analysis of the data generated by MAPS by using the software package maps3end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proudfoot NJ (2011) Ending the message: poly(A) signals then and now. Genes Dev 25(17):1770–1782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Li Y, Sun Y, Fu Y et al (2012) Dynamic landscape of tandem 3′ UTRs during zebrafish development. Genome Res 22(10):1899–1906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Shepard PJ, Choi EA, Lu J et al (2011) Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17(4): 761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wang L, Dowell RD, Yi R (2013) Genome-wide maps of polyadenylation reveal dynamic mRNA 3′-end formation in mammalian cell lineages. RNA 19(3):413–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Shi Y (2012) Alternative polyadenylation: new insights from global analyses. RNA 18(12):2105–2117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lin Y, Li Z, Ozsolak F et al (2012) An in-depth map of polyadenylation sites in cancer. Nucleic Acids Res 40(17):8460–8471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fu XD (2004) Towards a splicing code. Cell 119(6):736–738

    Article  CAS  PubMed  Google Scholar 

  8. Ozsolak F, Platt AR, Jones DR et al (2009) Direct RNA sequencing. Nature 461(7265): 814–818

    Article  CAS  PubMed  Google Scholar 

  9. Ozsolak F, Kapranov P, Foissac S et al (2010) Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143(6):1018–1029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Beck AH, Weng Z, Witten DM et al (2010) 3′-end sequencing for expression quantification (3SEQ) from archival tumor samples. PloS One 5(1):e8768

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mangone M, Manoharan AP, Thierry-Mieg D et al (2010) The landscape of C. elegans 3′UTRs. Science 329(5990):432–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fox-Walsh K, Davis-Turak J, Zhou Y et al (2011) A multiplex RNA-seq strategy to profile poly(A+) RNA: application to analysis of transcription response and 3′ end formation. Genomics 98(4):266–271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fu Y, Sun Y, Li Y et al (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21(5):741–747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Derti A, Garrett-Engele P, Macisaac KD et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22(6): 1173–1183

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Haenni S, Ji Z, Hoque M et al (2012) Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3′-end-seq. Nucleic Acids Res 40(13):6304–6318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jenal M, Elkon R, Loayza-Puch F et al (2012) The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149(3):538–553

    Article  CAS  PubMed  Google Scholar 

  17. Martin G, Gruber AR, Keller W et al (2012) Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 1(6):753–763

    Article  CAS  PubMed  Google Scholar 

  18. Jan CH, Friedman RC, Ruby JG et al (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469(7328):97–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hoque M, Ji Z, Zheng D, Luo W et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Meyer LR, Zweig AS, Hinrichs AS et al (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41((Database issue)):D64–D69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed Central  PubMed  Google Scholar 

  22. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11(9):1520–1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Wilkening S, Pelechano V, Jarvelin AI et al (2013) An efficient method for genome-wide polyadenylation site mapping and RNA quantification. Nucleic Acids Res 41(5):e65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge early contribution of Kristi Fox-Walsh to this method. This work was supported by NIH grants (HG004659) to XDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Dong Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zhou, Y., Li, HR., Huang, J., Jin, G., Fu, XD. (2014). Multiplex Analysis of PolyA-Linked Sequences (MAPS): An RNA-Seq Strategy to Profile Poly(A+) RNA. In: Rorbach, J., Bobrowicz, A. (eds) Polyadenylation. Methods in Molecular Biology, vol 1125. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-971-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-971-0_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-970-3

  • Online ISBN: 978-1-62703-971-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics