Skip to main content

Redesigning the Specificity of Protein–DNA Interactions with Rosetta

  • Protocol
  • First Online:
Homing Endonucleases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1123))

Abstract

Building protein tools that can selectively bind or cleave specific DNA sequences requires efficient technologies for modifying protein–DNA interactions. Computational design is one method for accomplishing this goal. In this chapter, we present the current state of protein–DNA interface design with the Rosetta macromolecular modeling program. The LAGLIDADG endonuclease family of DNA-cleaving enzymes, under study as potential gene therapy reagents, has been the main testing ground for these in silico protocols. At this time, the computational methods are most useful for designing endonuclease variants that can accommodate small numbers of target site substitutions. Attempts to engineer for more extensive interface changes will likely benefit from an approach that uses the computational design results in conjunction with a high-throughput directed evolution or screening procedure. The family of enzymes presents an engineering challenge because their interfaces are highly integrated and there is significant coordination between the binding and catalysis events. Future developments in the computational algorithms depend on experimental feedback to improve understanding and modeling of these complex enzymatic features. This chapter presents both the basic method of design that has been successfully used to modulate specificity and more advanced procedures that incorporate DNA flexibility and other properties that are likely necessary for reliable modeling of more extensive target site changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin X, West SM, Joshi R, Honig B, Mann RS (2010) Origins of specificity in protein–DNA recognition. Annu Rev Biochem 79:233–269

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ashworth J, Baker D (2009) Assessment of optimization of affinity and specificity at protein–DNA interfaces. Nucleic Acids Res 37:e73

    Article  PubMed Central  PubMed  Google Scholar 

  3. Morozov AV, Havranek JJ, Baker D, Siggia ED (2005) Protein–DNA binding specificity predictions with structural models. Nucleic Acids Res 33:5781–5798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stoddard BL (2005) Homing endonuclease structure and function. Q Rev Biophys 38:39–95

    Google Scholar 

  5. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gao H et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187

    Article  CAS  PubMed  Google Scholar 

  7. Windbichler N et al (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473:212–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Marcaida MJ, Munoz IG, Blanco FJ, Prieto J, Montoya G (2009) Homing endonucleases: from basis to therapeutic applications. Cell Mol Life Sci 67:727–748

    Article  Google Scholar 

  9. Perez EE et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Takeuchi R, Certo M, Caprara MG, Scharenberg AM, Stoddard BL (2008) Optimization of in vivo activity of a bifunctional homing endonuclease and maturase reverses evolutionary degradation. Nucleic Acids Res 37:877–890

    Article  PubMed Central  PubMed  Google Scholar 

  11. Chames P, Epinat JC, Guillier S, Patin A, Lacroix E, Pâques F (2005) In vivo selection of engineered homing endonucleases using double-strand break induced homologous recombination. Nucleic Acids Res 33:e178

    Article  PubMed Central  PubMed  Google Scholar 

  12. Doyon JB, Pattanayak V, Meyer CB, Liu DR (2006) Directed evolution and substrate specificity profiling of homing endonuclease I-SceI. J Am Chem Soc 128:2477–2484

    Article  CAS  PubMed  Google Scholar 

  13. Jarjour J et al (2009) High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res 37:6871–6880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Voigt CA, Mayo SL, Arnold FH, Wang Z (2001) Computational method to reduce the search space for directed protein evolution. Proc Natl Acad Sci U S A 98:3778–3783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen MM, Snow CD, Vizcarra CL, Mayo SL, Arnold FH (2012) Comparison of random mutagenesis and semi-rational designed libraries for improved cytochrome P450 BM3-catalyzed hydroxylation of small alkanes. Protein Eng Des Sel 25:171–178

    Article  CAS  PubMed  Google Scholar 

  16. Khersonsky O, Röthlisberger D, Wollacott AM, Murphy P, Dym O, Albeck S, Kiss G, Houk KN, Baker D, Tawfik DS (2011) Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution. J Mol Biol 407:391–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Leaver-Fay A et al (2011) Rosetta3: an object-oriented software suite for simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  PubMed  Google Scholar 

  18. Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Thyme SB, Jarjour J, Takeuchi R, Havranek JJ, Ashworth J, Scharenberg AM, Stoddard BL, Baker D (2009) Exploitation of binding energy for catalysis and design. Nature 461:1300–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ulge UY, Baker DA, Monnat RJ Jr (2011) Comprehensive computational design of mCreI homing endonuclease cleavage specificity for genome engineering. Nucleic Acids Res 39:4330–4339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ashworth J, Taylor GK, Havranek JJ, Quadri SA, Stoddard BL, Baker D (2010) Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res 38:5601–5608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Dunbrack RL Jr, Cohen FE (1997) Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 6:1661–1681

    Article  CAS  PubMed  Google Scholar 

  23. Thyme SB, Baker D, Bradley P (2012) Improved modeling of side-chain–base interactions and plasticity in protein–DNA interface design. J Mol Biol 419:255–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yanover C, Bradley P (2011) Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res 39:4564–4576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Havranek JJ, Baker D (2009) Motif-directed flexible backbone design of functional interactions. Protein Sci 18:1293–1305

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Ulge UY, Hovde BT, Doyle LA, Monnat RJ Jr (2011) Comprehensive homing endonuclease target site specificity profiling reveals evolutionary constraints and enables genome engineering applications. Nucleic Acids Res 40:2587–2598

    Article  PubMed Central  PubMed  Google Scholar 

  27. Redondo P et al (2008) Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456:107–111

    Article  CAS  PubMed  Google Scholar 

  28. Takeuchi R, Lambert AR, Mak AN, Jacoby K, Dickson RJ, Gloor GB, Scharenberg AM, Edgell DR, Stoddard BL (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci U S A 108:13077–13082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Grizot S, Duclert A, Thomas S, Duchateau P, Pâques F (2011) Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease. Nucleic Acids Res 39:6124–6136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pabo CO, Nekludova L (2000) Geometric analysis and comparison of protein–DNA interfaces: why is there no simple code for recognition? J Mol Biol 301:597–624

    Article  CAS  PubMed  Google Scholar 

  31. Miller JC et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  32. Fleishman SJ et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Röthlisberger D et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  PubMed  Google Scholar 

  34. Azoitei ML et al (2011) Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334:373–376

    Article  CAS  PubMed  Google Scholar 

  35. Szeto MD, Boissel SJS, Baker D, Thyme SB (2011) Mining endonuclease cleavage determinants in genomic sequence data. J Biol Chem 286:32617–32627

    Article  CAS  PubMed  Google Scholar 

  36. Baxter S, Lambert AR, Kuhar R, Jarjour J, Kulshina N, Parmeggiani F, Danaher P, Gano J, Baker D, Stoddard BL, Scharenberg AM (2012) Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases. Nucleic Acids Res 40:7985–8000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Steffen NR, Murphy SD, Tolleri L, Hatfield GW, Lathrop RH (2002) DNA sequence and structure: direct and indirect recognition in protein–DNA binding. Bioinformatics 18:S22–S30

    Article  PubMed  Google Scholar 

  38. Becker NB, Wolff L, Everaers R (2006) Indirect readout: detection of optimized sequences and calculation of relative binding affinities using different DNA elastic potentials. Nucleic Acids Res 34:5638–5649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fleishman SJ et al (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6:e20161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Canutescu AA, Dunbrack RL (2003) Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 12:963–972

    Article  CAS  PubMed  Google Scholar 

  41. Wang C, Bradley P, Baker D (2007) Protein–protein docking with backbone flexibility. J Mol Biol 373:503–519

    Article  CAS  PubMed  Google Scholar 

  42. Havranek JJ, Harbury PB (2003) Automated design of specificity in molecular recognition. Nature Struct Biol 10:45–52

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell M (1996) An introduction to genetic algorithms, MIT Press

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Justin Ashworth, Phil Bradley, and Jim Havranek for their vast contributions to improving protein–DNA interface design, as well as the entire RosettaCommons community for contributions to the Rosetta code base. This work was supported by the US National Institutes of Health (#GM084433 and #RL1CA133832 to DB), the Foundation for the National Institutes of Health through the Gates Foundation Grand Challenges in Global Health Initiative, and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thyme, S., Baker, D. (2014). Redesigning the Specificity of Protein–DNA Interactions with Rosetta. In: Edgell, D. (eds) Homing Endonucleases. Methods in Molecular Biology, vol 1123. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-968-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-968-0_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-967-3

  • Online ISBN: 978-1-62703-968-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics