Skip to main content

Homing Endonuclease Target Determination Using SELEX Adapted for Yeast Surface Display

  • Protocol
  • First Online:
Homing Endonucleases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1123))

Abstract

Knowing the target sequence of a DNA-binding protein is vital in obtaining fundamental characteristics of the protein and evaluating properties of the protein–DNA interaction. For example, novel homing endonucleases cannot be proven to be functional until a predicted target site is tested. Unfortunately, target site prediction is not always easy, or even possible, depending on the amount of sequence data available. Here we describe a modification of SELEX using yeast surface display that can quickly and inexpensively resolve DNA-binding targets in high throughput for proteins without any prior assumptions or knowledge regarding the target site. This protocol is easily integrated into the yeast surface display pipeline and is leveraged by the expansive number of existing tools for both SELEX and yeast surface display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thermes V, Grabher C, Ristoratore F et al (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98

    Article  CAS  PubMed  Google Scholar 

  2. Gouble A, Smith J, Bruneau S et al (2006) Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 8:616–622

    Article  CAS  PubMed  Google Scholar 

  3. Arnould S, Perez C, Cabaniols J-P et al (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65

    Article  CAS  PubMed  Google Scholar 

  4. Gao H, Smith J, Yang M et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187

    Article  CAS  PubMed  Google Scholar 

  5. Windbichler N, Papathanos PA, Catteruccia F et al (2007) Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res 35:5922–5933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Smih F, Rouet P, Romanienko PJ et al (1995) Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res 23:5012–5019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Smith J, Grizot S, Arnould S et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34:e149

    Article  PubMed Central  PubMed  Google Scholar 

  8. Jacoby K, Metzger M, Shen BW et al (2012) Expanding LAGLIDADG endonuclease scaffold diversity by rapidly surveying evolutionary sequence space. Nucleic Acids Res 40:4954–4964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Takeuchi R, Lambert AR, Mak AN-S et al (2011) Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci U S A 108:13077–13082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Heath PJ, Stephens KM, Monnat RJ et al (1997) The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol 4:468–476

    Article  CAS  PubMed  Google Scholar 

  11. Duan X, Gimble FS, Quiocho FA (1997) Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89:555–564

    Article  CAS  PubMed  Google Scholar 

  12. Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function and evolution. Cell Mol Life Sci 55:1304–1326

    Article  CAS  PubMed  Google Scholar 

  13. Pepper LR, Cho YK, Boder ET et al (2008) A decade of yeast surface display technology: where are we now? Comb Chem High Throughput Screen 11:127–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Djordjevic M (2007) SELEX experiments: New prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng 24:179–189

    Article  CAS  PubMed  Google Scholar 

  15. Baxter SK, Lambert AR, Scharenberg AM et al (2013) Flow cytometric assays for interrogating LAGLIDADG homing endonuclease DNA binding and cleavage properties, Methods Mol Biol(Clifton, NJ) 978:45–61

    Google Scholar 

  16. Jarjour J, West-Foyle H, Certo MT et al (2009) High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res 37:6871–6880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Jolma A, Kivioja T, Toivonen J et al (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20:861–873

    Article  CAS  PubMed  Google Scholar 

  18. Roulet E, Busso S, Camargo AA et al (2002) High-throughput SELEX-SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotech 20:831–835

    Article  CAS  Google Scholar 

  19. Lorenz C, von Pelchrzim F, Schroeder R (2006) Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) for the identification of protein-binding RNAs independent of their expression levels. Nat Protoc 1:2204–2212

    Article  CAS  PubMed  Google Scholar 

  20. Petek LM, Russell DW, Miller DG (2010) Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther 18:983–986

    Article  CAS  PubMed  Google Scholar 

  21. Thyme SB, Jarjour J, Takeuchi R et al (2009) Exploitation of binding energy for catalysis and design. Nature 461:1300–1304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Piasecki SK, Hall B, Ellington AD (2009) Nucleic acid pool preparation and characterization. Methods Mol Biol (Clifton, NJ) 535:3–18

    Article  CAS  Google Scholar 

  23. Hall B, Micheletti JM, Satya P et al (2009) Design, synthesis, and amplification of DNA pools for in vitro selection. In: Frederick M, Ausubel et al (eds). Current protocols in molecular biology. Chapter 24, Unit 24.2

    Google Scholar 

  24. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3 – new capabilities and interfaces. Nucleic Acids Res 40:e115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  26. Volná P, Jarjour J, Baxter S et al (2007) Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases. Nucleic Acids Res 35:2748–2758

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gietz RD, Schiestl RH (2007) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:1–4

    Article  CAS  PubMed  Google Scholar 

  29. Gietz RD, Schiestl RH (2007) Large-scale high-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:38–41

    Article  CAS  PubMed  Google Scholar 

  30. Gogarten JP, Hilario E (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jacoby, K., Scharenberg, A.M. (2014). Homing Endonuclease Target Determination Using SELEX Adapted for Yeast Surface Display. In: Edgell, D. (eds) Homing Endonucleases. Methods in Molecular Biology, vol 1123. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-968-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-968-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-967-3

  • Online ISBN: 978-1-62703-968-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics