Skip to main content

Diagnostic Assays for Chronic Granulomatous Disease and Other Neutrophil Disorders

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1124))

Abstract

Inasmuch as neutrophils are the primary cellular defense against bacterial and fungal infections, disorders that affect these white cells typically predispose individuals to severe and recurrent infections. Therefore, diagnosis of such disorders is an important first step in directing long-term treatment/care for the patient. Herein, we describe methods to identify chronic granulomatous disease, leukocyte adhesion deficiency, and neutropenia. The assays are relatively simple to perform and cost effective and can be performed with equipment available in most laboratories.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Witko-Sarsat P, Rieu B, Descamps-Latscha PL, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    Article  CAS  PubMed  Google Scholar 

  2. Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 34: 237–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Cederlund A, Gudmundsson GH, Agerberth B (2011) Antimicrobial peptides important in innate immunity. FEBS J 278:3942–3951

    Article  CAS  PubMed  Google Scholar 

  4. Rosenzweig SD, Holland SM (2011) Recent insights into the pathobiology of innate immune deficiencies. Curr Allergy Asthma Rep 11:369–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Berendes H, Bridges RA, Good RA (1957) A fatal granulomatous disease of childhood: the clinical study of a new syndrome. Minn Med 40:309–312

    CAS  PubMed  Google Scholar 

  6. Levy R, Rotrosen D, Nagauker O, Leto T, Malech H (1990) Induction of the respiratory burst in HL-60 cells, correlation of function and protein expression. J Immunol 145: 2595–2601

    CAS  PubMed  Google Scholar 

  7. Hanna S, Etzioni A (2012) Leukocyte adhesion deficiencies. Ann N Y Acad Sci 1250: 50–55

    Article  CAS  PubMed  Google Scholar 

  8. Boztug K, Klein C (2011) Genetic etiologies of severe congenital neutropenia. Curr Opin Pediatr 23:21–26

    Article  CAS  PubMed  Google Scholar 

  9. Kostman R (1975) Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr Scand 64:362–368

    Article  CAS  PubMed  Google Scholar 

  10. Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC (1999) Mutations in ELA2 encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23:433–436

    Article  CAS  PubMed  Google Scholar 

  11. Zuelzer WW (1964) “Myelokathexis”: a new form of chronic granulocytopenia. N Engl J Med 270:699–704

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, Klotman ME, Diaz GA (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34:70–74

    Article  CAS  PubMed  Google Scholar 

  13. Stroncek DF, Skubitz KM, McCullough J (1990) Biochemical nature of the neutrophil-specific antigen NB1. Blood 75:744–755

    CAS  PubMed  Google Scholar 

  14. Baehner RL, Boxer LA, Davis J (1976) The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood 48:309–313

    CAS  PubMed  Google Scholar 

  15. Choi HS, Kim JW, Cha YN, Kim C (2006) A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoass Immunochem 27:31–44

    Article  CAS  Google Scholar 

  16. Tan AS, Berridge MV (2000) Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J Immunol Methods 238:59–68

    Article  CAS  PubMed  Google Scholar 

  17. Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444

    Article  CAS  PubMed  Google Scholar 

  18. Peskin AV, Winterbourn CC (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293:157–166

    Article  CAS  PubMed  Google Scholar 

  19. Björquist P, Palmer M, Ek B (1994) Measurement of superoxide anion production using maximal rate of cytochrome (III) C reduction in phorbol ester stimulated neutrophils, immobilised to microtiter plates. Biochem Pharmacol 48: 1967–1972

    Article  PubMed  Google Scholar 

  20. Liu L, Dahlgren C, Elwing H, Lundqvist H (1996) A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J Immunol Methods 192:173–178

    Article  CAS  PubMed  Google Scholar 

  21. Hasegawa H, Suzuki K, Nakaji S, Sugawara K (1997) Analysis and assessment of the capacity of neutrophils to produce reactive oxygen species in a 96-well microplate format using lucigenin- and luminol-dependent chemiluminescence. J Immunol Methods 210:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H (2009) In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med 47:760–766

    Article  CAS  PubMed  Google Scholar 

  23. Skatchkov MP, Sperling D, Hink U, Mülsch A, Harrison DG, Sindermann I, Meinertz T, Münzel T (1999) Validation of lucigenin as a chemiluminescent probe to monitor vascular superoxide as well as basal vascular nitric oxide production. Biochem Biophys Res Commun 254:319–324

    Article  CAS  PubMed  Google Scholar 

  24. Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH, Morawietz H (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205

    Article  CAS  PubMed  Google Scholar 

  25. Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 178:89–97

    Article  CAS  PubMed  Google Scholar 

  26. Bass DA, Parce W, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometry studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917

    CAS  PubMed  Google Scholar 

  27. Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11:1–5

    Article  CAS  PubMed  Google Scholar 

  28. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′, 7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146–159

    Google Scholar 

  29. Emmendörffer A, Nakamura M, Rothe G, Spiekermann K, Lohmann Matthes ML, Roesler J (1994) Evaluation of flow cytometric methods for the diagnosis of chronic granulomatous disease variants under routine laboratory conditions. Cytometry 18:147–155

    Article  PubMed  Google Scholar 

  30. Alvarez-Larran A, Toll T, Rives S, Estella J (2005) Assessment of neutrophil activation in whole blood by flow cytometry. Clin Lab Haematol 27:41–46

    Article  CAS  PubMed  Google Scholar 

  31. Pou S, Rosen GM, Bntigan BE, Cohen MS (1989) Intracellular spintrapping of oxygen centered radicals generated by human neutrophils. Biochim Biophys Acta 991:459–464

    Article  CAS  PubMed  Google Scholar 

  32. Roubaud V, Sankarapandi S, Kuppusamy P, Tordo P, Zweier JL (1997) Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide. Anal Biochem 247: 404–411

    Article  CAS  PubMed  Google Scholar 

  33. Leiding JW, Holland SM (2012) Chronic granulomatous disease. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP (eds) GeneReviews™ [internet]. University of Washington, Seattle, Seattle, WA, 1993–2013

    Google Scholar 

  34. Newburger PE, Cohen HJ, Rothchild SB, Hobbins JC, Malawista SE, Mahoney MJ (1979) Prenatal diagnosis of chronic granulomatous disease. N Engl J Med 300:178–181

    Article  CAS  PubMed  Google Scholar 

  35. Matthay KK, Golbus MS, Wara DW, Mentzer WC (1984) Prenatal diagnosis of chronic granulomatous disease. Am J Med Genet 17: 731–739

    Article  CAS  PubMed  Google Scholar 

  36. Anderson DC, Schmalsteig FC, Finegold MJ, Hughes BJ, Rothlein R, Miller LJ et al (1985) The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis 152:669–689

    Google Scholar 

  37. Tan SM, Hyland RH, Al-shamkhani A, Douglass WA, Shaw JM, Law SK (2000) Effect of integrin beta 2 subunit truncations on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) assembly, surface expression, and function. J Immunol 165:2574–2581

    CAS  PubMed  Google Scholar 

  38. Verheugt FW, Von dem Borne AE, Decary F, Engelfriet CP (1977) The detection of granulocyte alloantibodies with an indirect immunofluorescence test. Br J Haematol 36: 533–544

    Article  CAS  PubMed  Google Scholar 

  39. Curtis BR, Reno C, Aster RH (2005) Neonatal alloimmune neutropenia attributed to maternal immunoglobulin G antibodies against the neutrophil alloantigen HNA-1c (SH): a report of five cases. Transfusion 45:1308–1313

    Article  PubMed  Google Scholar 

  40. Wikman A, Olsson I, Shanwellt A, Lundahl J (2001) Detection by flow cytometry of antibodies against surface and intracellular granulocyte antigens. Scand J Clin Lab Invest 61: 307–316

    Article  CAS  PubMed  Google Scholar 

  41. Vowells SJ, Fleisher TA, Sekhsaria S, Alling DW, Maguire TE, Malech HL (1996) Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. J Pediatr 128:104–107

    Article  CAS  PubMed  Google Scholar 

  42. Lindlöf M, Kere J, Ristola M, Repo H, Leirisalo-Repo M, van Koskull H, Ammala P, De la Chapelle A (1987) Prenatal diagnosis of X-linked granulomatous disease using restriction fragment length polymorphism analysis. Genomics 1:87–92

    Article  PubMed  Google Scholar 

  43. Heyworth PG, Curnutte JT (2006) Molecular diagnosis of chronic granulomatous disease. In: Detrick B, Hamilton RG, Folds JD (eds) Manual of molecular and clinical laboratory immunology, 7th edn. ASM press, Washington, DC, pp 262–271

    Google Scholar 

  44. Chien SC, Lee CN, Hung CC, Tsao PN, Su YN, Hsieh FJ (2003) Rapid prenatal diagnosis of X-linked chronic granulomatous disease using a denaturing high performance liquid chromatography (DHPLC) system. Prenat Diagn 23:1092–1096

    Article  CAS  PubMed  Google Scholar 

  45. Kaplan J, De Domenico I, Ward DM (2008) Chediak-Higashi syndrome. Curr Opin Hematol 15:22–29

    Article  CAS  PubMed  Google Scholar 

  46. Tamura A, Agematsu K, Mori T, Kawai H, Kuratsuji T, Shimane M, Tani K, Asano S, Komiyama A (1994) A marked decrease in defensin mRNA in the only case of congenital neutrophil-specific granule deficiency reported in Japan. Int J Hematol 59:137–142

    CAS  PubMed  Google Scholar 

  47. Zen K, Reaves TA, Soto I, Liu Y (2006) Response to genistein: assaying the activation status and chemotaxis efficacy of isolated neutrophils. J Immunol Methods 309:86–98

    Article  CAS  PubMed  Google Scholar 

  48. Hanson AJ, Quinn MT (2002) Effect of fibrin sealant composition on human neutrophil chemotaxis. J Biomed Mater Res 61:474–481

    Article  CAS  PubMed  Google Scholar 

  49. Mauch L, Lun A, O’Gorman MRG, Harris JS, Schulze I, Zychlinsky A, Fuchs T, Oelschlagel U, Brenner S, Kutter D, Rosen-Wolff A, Roesler J (2007) Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but Can Be easily discerned in routine testing for CGD. Clinical Chem 53(5):890–896

    Article  CAS  Google Scholar 

  50. Elloumi HZ, Holland SM (2007) Diagnostic assays for chronic granulomatous disease and other neutrophil disorders. Methods Mol Biol 412:505–523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Elloumi, H.Z., Holland, S.M. (2014). Diagnostic Assays for Chronic Granulomatous Disease and Other Neutrophil Disorders. In: Quinn, M., DeLeo, F. (eds) Neutrophil Methods and Protocols. Methods in Molecular Biology, vol 1124. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-845-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-845-4_31

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-844-7

  • Online ISBN: 978-1-62703-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics