Skip to main content

Generation of Functionally Mature Neutrophils from Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Neutrophil Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1124))

Abstract

Induced pluripotent stem cells (iPSCs) are pluripotent stem cells established from somatic cells. The capability of iPSCs to differentiate into any mature cell lineage under the appropriate conditions allows for modeling of cell processes as well as disease states. Here, we describe an in vitro method for generating functional mature neutrophils from human iPSCs. We also describe assays for testing these differentiated cells for neutrophil characteristics and functions by morphology, cell surface markers, production of reactive oxygen species, microbial killing, and mobilization of neutrophils to an inflammatory site in an in vivo immunodeficient mouse infusion model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winkelstein JA, Marino MC, Johnston RB Jr et al (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine 79:155–169

    Article  CAS  PubMed  Google Scholar 

  2. van den Berg JM, van Koppen E, Ã…hlin A et al (2009) Chronic granulomatous disease: the European experience. PLoS ONE 4:e5234

    Article  PubMed Central  PubMed  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  4. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920

    Article  CAS  PubMed  Google Scholar 

  5. Park I-H, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zou J, Sweeney CL, Chou BK et al (2011) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117: 5561–5572

    Article  CAS  PubMed  Google Scholar 

  7. Merling RK, Sweeney CL, Choi U et al (2013) Transgene-free iPSCs generated from small volume peripheral blood non-mobilized CD34+ cells. Blood. doi:10.1182/blood-2012-03-420273

    PubMed  Google Scholar 

  8. Saeki K, Saeki K, Nakahara M et al (2009) A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells 27:59–67

    Article  CAS  PubMed  Google Scholar 

  9. Choi K-D, Vodyanik M, Slukvin II (2011) Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells. Nat Protoc 6:296–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Morishima T, K-i W, Niwa A et al (2011) Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol 226:1283–1291

    Article  CAS  PubMed  Google Scholar 

  11. Yokoyama Y, Suzuki T, Sakata-Yanagimoto M et al (2009) Derivation of functional mature neutrophils from human embryonic stem cells. Blood 113:6584–6592

    Article  CAS  PubMed  Google Scholar 

  12. Kodama H, Nose M, Niida S et al (1994) Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells. Exp Hematol 22:979–984

    CAS  PubMed  Google Scholar 

  13. Henderson LM, Chappell JB (1993) Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur J Biochem 217: 973–980

    Article  CAS  PubMed  Google Scholar 

  14. Buescher ES, Alling DW, Gallin JI (1985) Use of an X-linked human neutrophil marker to estimate timing of lyonization and size of the dividing stem cell pool. J Clin Invest 76: 1581–1584. doi:10.1172/jci112140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Malech HL, Maples PB, Whiting-Theobald N et al (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A 94:12133–12138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Metcalf JA, Gallin JI, Nauseef WM et al (1986) Microbicidal assay. In: Laboratory manual of neutrophil function. Raven Press, New York, pp 134–143

    Google Scholar 

  17. Baron EJ, Proctor RA (1982) Elicitation of peritoneal polymorphonuclear neutrophils from mice. J Immunol Methods 49:305–313

    Article  CAS  PubMed  Google Scholar 

  18. Watanabe K, Ueno M, Kamiya D et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  CAS  PubMed  Google Scholar 

  19. Ng ES, Davis RP, Azzola L et al (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603

    Article  CAS  PubMed  Google Scholar 

  20. Ortolani C (2011) CD16 antigen. In: Flow cytometry of hematological malignancies, 1st edition. Wiley-Blackwell, Oxford, UK, pp 45–48

    Google Scholar 

  21. Decleva E, Menegazzi R, Busetto S et al (2006) Common methodology is inadequate for studies on the microbicidal activity of neutrophils. J Leukoc Biol 79:87–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All of the authors were supported by the intramural research program of the National Institute of Allergy and Infectious Diseases. This work was supported in part by an intramural award to HLM from the NIH Center for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sweeney, C.L. et al. (2014). Generation of Functionally Mature Neutrophils from Induced Pluripotent Stem Cells. In: Quinn, M., DeLeo, F. (eds) Neutrophil Methods and Protocols. Methods in Molecular Biology, vol 1124. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-845-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-845-4_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-844-7

  • Online ISBN: 978-1-62703-845-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics