Skip to main content

FTIR Spectroscopy of Metalloproteins

  • Protocol
  • First Online:
Book cover Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

Absorption of infrared radiation by proteins gives important information about their structure and function. The most intense infrared bands correspond to the overlap of all the peptide bond absorption. Additionally, in many metalloproteins their prosthetic groups have intrinsic ligands or bind substrates/inhibitors that absorb intensively in the infrared. Here, we describe thoroughly several Fourier transform infrared methods for studying structure–function relationships in metalloproteins, using hydrogenases as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banwell CD (1983) Infra-red Spectroscopy. In: Banwell CD (ed) Fundamentals of molecular spectroscopy, 3rd edn. McGraw-Hill, London, pp 72–123

    Google Scholar 

  2. Wharton CW (1986) Infra-red and Raman spectroscopic studies of enzyme structure and function. Biochem J 233:26–36

    Google Scholar 

  3. Thorneley RNF, George SJ (2000) Time-resolved Infra-red Spectroscopy of Functioning Nitrogenase. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Wymondham, pp 81–99

    Google Scholar 

  4. Radu I, Schleeger M, Bolwein CA, Heberle J (2009) Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane-proteins. Photochem Photobiol Sci 8:1517–1528

    Article  CAS  PubMed  Google Scholar 

  5. Wang LX, Jiang XE (2012) Bioanalytical applications of surface-enhanced infrared absorption spectroscopy. Chin J Anal Chem 40:975–982

    Article  CAS  Google Scholar 

  6. De Lacey AL, Rousset M, Cammack R, Fernandez VM (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107:4304–4330

    Article  PubMed  Google Scholar 

  7. Sakurai T, Takahasi J, Huang H (1996) FT-IR spectra of the azide-type 3 copper in laccase and ascorbate oxidase. Chem Lett 8:651–652

    Article  Google Scholar 

  8. George SJ, Allen JWA, Ferguson SJ, Thorneley RNF (2000) Time-resolved infrared spectroscopy reveals a stable ferric heme-NO intermediate in the reaction of Paracoccus pantotrophus cytochrome cd 1 nitrite reductase with nitrite. J Biol Chem 275:33231–33237

    Article  CAS  PubMed  Google Scholar 

  9. Hendrich MP, Upadhay AK, Riga J, Arciero DM, Hooper AB (2002) Spectroscopic characterization of the NO adduct of hydroxylamine oxidoreductase. Biochemistry 41:4603–4611

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Huang S, Seravalli J, Gutzman H Jr, Swartz DJ, Ragsdale SW, Baglley KA (2003) Infrared studies of carbon monoxide binding to carbon monoxide dehydrogenase/acetyl-CoA synthase from Moorella thermoacetica. Biochemistry 42:14822–14830

    Article  CAS  PubMed  Google Scholar 

  11. Moss D, Nabedryk E, Breton J, Mantele W (1990) Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Eur J Biochem 187:565–572

    Article  CAS  PubMed  Google Scholar 

  12. Miyake H, Ye S, Osawa M (2002) Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem Commun 4:973–977

    Article  CAS  Google Scholar 

  13. Millo D, Pandelia M-E, Utesch T, Wisitruangsakul N, Mroginski MA, Lubitz W, Hildebrandt P, Zebger I (2009) Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold. J Phys Chem B 113:15344–15351

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio L. De Lacey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gutiérrez-Sanz, O., Rüdiger, O., De Lacey, A.L. (2014). FTIR Spectroscopy of Metalloproteins. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics