Skip to main content

Electrochemistry of Metalloproteins: Protein Film Electrochemistry for the Study of E. coli [NiFe]-Hydrogenase-1

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

Protein film electrochemistry is a technique which allows the direct control of redox-active enzymes, providing particularly detailed information on their catalytic properties. The enzyme is deposited onto a working electrode tip, and through control of the applied potential the enzyme activity is monitored as electrical current, allowing for direct study of inherent activity as electrons are transferred to and from the enzyme redox center(s). No mediators are used. Because the only enzyme present in the experiment is bound at the electrode surface, gaseous and liquid phase inhibitors can be introduced and removed whilst the enzyme remains in situ. Potential control means that kinetics and thermodynamics are explored simultaneously; the kinetics of a reaction can be studied as a function of potential. Steady-state catalytic rates are observed directly as current (for a given potential) and non-steady-state rates (such as interconversions between different forms of the enzyme) are observed from the change in current with time. The more active the enzyme, the higher the current and the better the signal-to-noise. In this chapter we outline the practical aspects of PFE for studying electroactive enzymes, using the Escherichia coli [NiFe]-hydrogenase 1 (Hyd-1) as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies TJ, Hyde ME, Compton RG (2005) Nanotrench arrays reveal insight into graphite electrochemistry. Angew Chem 117:5251–5256

    Article  Google Scholar 

  2. Blanford C, Armstrong F (2006) The pyrolytic graphite surface as an enzyme substrate: microscopic and spectroscopic studies. J Solid State Electrochem 10:826–832

    Article  CAS  Google Scholar 

  3. Léger C, Elliott SJ, Hoke KR, Jeuken LJC, Jones AK, Armstrong FA (2003) Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Biochemistry 42:8653–8662

    Article  PubMed  Google Scholar 

  4. Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA (2013) The principles of sustained enzymatic hydrogen oxidation in the presence of oxygen—the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. J Am Chem Soc 135:2694–2707

    Article  CAS  PubMed  Google Scholar 

  5. Foster CE, Krämer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA (2012) Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. J Am Chem Soc 134:7553–7557

    Article  CAS  PubMed  Google Scholar 

  6. Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lukey MJ, Roessler MM, Parkin A, Evans RM, Davies RA, Lenz O, Friedrich B, Sargent F, Armstrong FA (2011) Oxygen-tolerant [NiFe]-hydrogenases: the individual and collective importance of supernumerary cysteines at the proximal Fe-S cluster. J Am Chem Soc 133:16881–16892

    Article  CAS  PubMed  Google Scholar 

  8. Wang VCC, Can M, Pierce E, Ragsdale SW, Armstrong FA (2013) A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J Am Chem Soc 135:2198–2206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Parkin A, Seravalli J, Vincent KA, Ragsdale SW, Armstrong FA (2007) Rapid and efficient electrocatalytic CO2/CO interconversions by carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc 129:10328–10329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Anderson LJ, Richardson DJ, Butt JN (2001) Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Biochemistry 40:11294–11307

    Article  CAS  PubMed  Google Scholar 

  11. Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci USA 108:14049–14054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases1. FEMS Microbiol Rev 25:455–501

    Article  CAS  PubMed  Google Scholar 

  13. Volbeda A, Darnault C, Parkin A, Sargent F, Armstrong FA, Fontecilla-Camps JC (2013) Crystal structure of the O2-tolerant membrane-bound hydrogenase 1 from Escherichia coli in complex with its cognate cytochrome b. Structure 21:184–190

    Article  CAS  PubMed  Google Scholar 

  14. Volbeda A, Amara P, Darnault C, Mouesca J-M, Parkin A, Roessler MM, Armstrong FA, Fontecilla-Camps JC (2012) X-ray crystallographic and computational studies of the O2-tolerant [NiFe]-hydrogenase 1 from Escherichia coli. Proc Natl Acad Sci USA 109:5305–5310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CMT (2011) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252

    Article  CAS  PubMed  Google Scholar 

  16. Shomura Y, Yoon K-S, Nishihara H, Higuchi Y (2011) Structural basis for a [4Fe-3S] cluster in the oxygen-tolerant membrane-bound [NiFe]-hydrogenase. Nature 479:253–256

    Article  CAS  PubMed  Google Scholar 

  17. Cracknell JA, Wait AF, Lenz O, Friedrich B, Armstrong FA (2009) A kinetic and thermodynamic understanding of O2 tolerance in [NiFe]-hydrogenases. Proc Natl Acad Sci USA 106:20681–20686

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jones AK, Lamle SE, Pershad HR, Vincent KA, Albracht SPJ, Armstrong FA (2003) Enzyme electrokinetics: electrochemical studies of the anaerobic interconversions between active and inactive states of Allochromatium vinosum [NiFe]-hydrogenase. J Am Chem Soc 125:8505–8514

    Article  CAS  PubMed  Google Scholar 

  19. Lamle SE, Albracht SPJ, Armstrong FA (2004) Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: insights into the puzzling difference between unready and ready oxidized inactive states. J Am Chem Soc 126:14899–14909

    Article  CAS  PubMed  Google Scholar 

  20. Rousset M, Montet Y, Guigliarelli B, Forget N, Asso M, Bertrand P, Fontecilla-Camps JC, Hatchikian EC (1998) [3Fe-4S] to [4Fe-4S] cluster conversion in Desulfovibrio fructosovorans [NiFe] hydrogenase by site-directed mutagenesis. Proc Natl Acad Sci USA 95:11625–11630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Dementin S, Belle V, Bertrand P, Guigliarelli B, Adryanczyk-Perrier G, De LAL, Fernandez VM, Rousset M, Leger C (2006) Changing the ligation of the distal [4Fe4S] cluster in NiFe hydrogenase impairs inter- and intramolecular electron transfers. J Am Chem Soc 128:5209–5218

    Article  CAS  PubMed  Google Scholar 

  22. Roessler MM, Evans RM, Davies RA, Harmer J, Armstrong FA (2012) EPR spectroscopic studies of the Fe-S clusters in the O2-tolerant [NiFe]-hydrogenase Hyd-1 from E. coli, and characterization of the unique [4Fe-3S] cluster by HYSCORE. J Am Chem Soc 134:15581–15594

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  24. Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  25. Rudiger O, Abad JM, Hatchikian EC, Fernandez VM, De Lacey AL (2005) Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2. J Am Chem Soc 127:16008–16009

    Article  PubMed  Google Scholar 

  26. Krishnan S, Armstrong FA (2012) Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chem Sci 3:1015–1023

    Article  CAS  Google Scholar 

  27. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  28. Léger C, Jones AK, Albracht SPJ, Armstrong FA (2002) Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J Phys Chem B 106:13058–13063

    Article  Google Scholar 

  29. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  30. Hirst J, Armstrong FA (1998) Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange. Anal Chem 70:5062–5071

    Article  CAS  PubMed  Google Scholar 

  31. Armstrong FA, Anthony Cox P, Hill HAO, Lowe VJ, Nigel Oliver B (1987) Metal ions and complexes as modulators of protein-interfacial electron transport at graphite electrodes. J Electroanal Chem Inter Electrochem 217:331–366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Biological and Biotechnological Sciences Research Council (Grants BB/H003878-1 and BB/I022309-1). We thank Elena Nomerotskaia for help with protein purification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fraser A. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Evans, R.M., Armstrong, F.A. (2014). Electrochemistry of Metalloproteins: Protein Film Electrochemistry for the Study of E. coli [NiFe]-Hydrogenase-1. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics