Skip to main content

Techniques for the Production, Isolation, and Analysis of Iron–Sulfur Proteins

  • Protocol
  • First Online:
Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

Iron–sulfur clusters constitute a group of cofactors found in many proteins that play key roles in an exceptionally wide range of metabolic processes. The chemical reactivity of iron–sulfur clusters means that they can be particularly prone to damage when removed from the protective environment of the cell. In general, the key to obtaining an intact, biologically active iron–sulfur cluster-containing protein is to maintain a strictly anaerobic environment throughout the entire process of protein purification and analysis. For many proteins, particularly those with more labile clusters, it is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balk J, Pilon M (2011) Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci 16:218–226

    Article  CAS  PubMed  Google Scholar 

  2. Sheftel A, Stehling O, Lill R (2010) Iron-sulfur proteins in health and disease. Trends Endocrinol Metab 21:302–314

    Article  CAS  PubMed  Google Scholar 

  3. Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5:2–15

    Article  CAS  PubMed  Google Scholar 

  4. Johnson MK (1998) Iron-sulfur proteins: new roles for old clusters. Curr Opin Chem Biol 2:173–181

    Article  CAS  PubMed  Google Scholar 

  5. Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    Article  CAS  PubMed  Google Scholar 

  6. Fleischhacker AS, Kiley PJ (2011) Iron-containing transcription factors and their roles as sensors. Curr Opin Chem Biol 15:335–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Crack JC, Green J, Thomson AJ, Le Brun NE (2012) Iron-sulfur cluster sensor-regulators. Curr Opin Chem Biol 16:35–44

    Article  CAS  PubMed  Google Scholar 

  8. Crack JC, Green J, Hutchings MI, Thomson AJ, Le Brun NE (2012) Bacterial iron-sulfur regulatory proteins as biological sensor-switches. Antioxid Redox Signal 17:1215–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Carter KR, Rawlings J, Orme-Johnson WH, Becker RR, Evans HJ (1980) Purification and characterization of a ferredoxin from Rhizobium japonicum bacteroids. J Biol Chem 255:4213–4223

    CAS  PubMed  Google Scholar 

  10. Averill BA, Bale JR, Ormejohnson WH (1978) Displacement of iron-sulfur clusters from ferredoxins and other iron-sulfur proteins. J Am Chem Soc 100:3034–3043

    Article  CAS  Google Scholar 

  11. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cruz-Ramos H, Crack J, Wu GG, Hughes MN, Scott C, Thomson AJ, Green J, Poole RK (2002) NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21:3235–3244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Crack JC, den Hengst CD, Jakimowicz P, Subramanian S, Johnson MK, Buttner MJ, Thomson AJ, Le Brun NE (2009) Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 48:12252–12264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Crack JC, Gaskell AA, Green J, Cheesman MR, Le Brun NE, Thomson AJ (2008) Influence of the environment on the [4Fe-4S]2+ to [2Fe-2S]2+ cluster switch in the transcriptional regulator FNR. J Am Chem Soc 130:1749–1758

    Article  CAS  PubMed  Google Scholar 

  15. Sutton VR, Kiley PJ (2003) Techniques for studying the oxygen-sensitive transcription factor FNR from Escherichia coli. Meth Enzymol 370:300–312

    Article  CAS  PubMed  Google Scholar 

  16. Yan A, Kiley PJ (2009) Techniques to isolate O2-sensitive proteins: [4Fe-4S]-FNR as an example. Meth Enzymol 463:787–805

    Article  CAS  PubMed  Google Scholar 

  17. Kuchenreuther JM, Grady-Smith CS, Bingham AS, George SJ, Cramer SP, Swartz JR (2010) High-yield expression of heterologous [FeFe] hydrogenases in Escherichia coli. PLoS One 5:e15491

    Article  PubMed Central  PubMed  Google Scholar 

  18. Stehling O, Smith PM, Biederbick A, Balk J, Lill R, Muhlenhoff U (2007) Investigation of iron-sulfur protein maturation in eukaryotes. Meth Mol Biol 372:325–342

    Article  CAS  Google Scholar 

  19. Orme-Johnson WH, Holm RH (1978) Identification of iron-sulfur clusters in proteins. Meth Enzymol 53:268–274

    Article  CAS  PubMed  Google Scholar 

  20. Lazazzera BA, Beinert H, Khoroshilova N, Kennedy MC, Kiley PJ (1996) DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 271:2762–2768

    Article  CAS  PubMed  Google Scholar 

  21. Winkler LW (1888) Die Bestimmung des im Wasser gelösten Sauerstoffes (the determination of oxygen dissolved in water). Berichte der deutschen chemischen Gesellschaft 21:2843–2854

    Article  Google Scholar 

  22. Crack JC, Stapleton MR, Green J, Thomson AJ, Le Brun NE (2013) Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved amongst NO-responsive regulators. J Biol Chem 288:11492–11502

    Article  CAS  PubMed  Google Scholar 

  23. Crack JC, Green J, Cheesman MR, Le Brun NE, Thomson AJ (2007) Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc Natl Acad Sci U S A 104:2092–2097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Crack JC, Jervis AJ, Gaskell AA, White GF, Green J, Thomson AJ, Le Brun NE (2008) Signal perception by FNR: the role of the iron-sulfur cluster. Biochem Soc Trans 36:1144–1148

    Article  CAS  PubMed  Google Scholar 

  25. Crack JC, Le Brun NE, Thomson AJ, Green J, Jervis AJ (2008) Reactions of nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global transcriptional regulator, during anaerobic growth of Escherichia coli. Meth Enzymol 437:191–209

    Article  CAS  PubMed  Google Scholar 

  26. Stephens PJ, Thomson AJ, Dunn JB, Keiderling TA, Rawlings J, Rao KK, Hall DO (1978) Circular dichroism and magnetic circular dichroism of iron-sulfur proteins. Biochemistry 17:4770–4778

    Article  CAS  PubMed  Google Scholar 

  27. Crack JC, Smith LJ, Stapleton MR, Peck J, Watmough NJ, Buttner MJ, Buxton RS, Green J, Oganesyan VS, Thomson AJ, Le Brun NE (2011) Mechanistic insight into the nitrosylation of the [4Fe-4S] cluster of WhiB-like proteins. J Am Chem Soc 133:1112–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Pinske C, Bonn M, Kruger S, Lindenstrauss U, Sawers RG (2011) Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 6:e22830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci U S A 90:2754–2758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Beinert H (1983) Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem 131:373–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by a series of grants from the BBSRC, held jointly between UEA and the University of Sheffield, over several years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason C. Crack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Crack, J.C., Green, J., Thomson, A.J., Le Brun, N.E. (2014). Techniques for the Production, Isolation, and Analysis of Iron–Sulfur Proteins. In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics