Skip to main content

Study of Metalloproteins Using Continuous Wave Electron Paramagnetic Resonance (EPR)

  • Protocol
  • First Online:
Book cover Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1122))

Abstract

Electron paramagnetic resonance (EPR) is an invaluable tool when studying systems with paramagnetic centers. It is a sensitive spectroscopic method, which can be used with dilute samples in aqueous buffer solutions. Here, we describe the basic procedure for recording an X-band EPR spectrum of a metalloprotein sample at low temperature. We also discuss basic optimization techniques to provide spectra with a high signal to noise ratio and minimum distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calle C et al (2006) Pulse EPR methods for studying chemical and biological samples containing transition metals. Helv Chim Acta 89:2495–2521

    Article  CAS  Google Scholar 

  2. Van Doorslaer S, Cereghetti GM, Glockshuber R, Schweiger A (2001) Unraveling the Cu2+ binding sites in the C-terminal domain of the murine prion protein: a pulse EPR and ENDOR study. J Phys Chem B 105:1631–1639

    Article  Google Scholar 

  3. Hagen W (2009) Biomolecular EPR spectroscopy. CRC, Boca Raton, FL

    Google Scholar 

  4. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, UK

    Google Scholar 

  5. Ubbink M, Worrall JAR, Canters GW, Groenen EJJ, Huber M (2002) Paramagnetic resonance of biological metal centers. Annu Rev Biophys Biomol Struct 31:393–422

    Article  CAS  PubMed  Google Scholar 

  6. Lyubenova S et al (2010) Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Acc Chem Res 43:181–189

    Article  CAS  PubMed  Google Scholar 

  7. Gambarelli S, Mouesca JM (2004) Correlation between the magnetic g tensors and the local cysteine geometries for a series of reduced [2Fe-2S*] protein clusters. A quantum chemical density functional theory and structural analysis. Inorg Chem 43:1441–1451

    Article  CAS  PubMed  Google Scholar 

  8. Neese F (2001) Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree-Fock and Kohn-Sham theory. J Chem Phys 115:11080–11096

    Article  CAS  Google Scholar 

  9. Neese F, Solomon EI (1998) Calculation of zero-field splittings, g-values, and the relativistic nephelauxetic effect in transition metal complexes. Application to high-spin ferric complexes. Inorg Chem 37:6568–6582

    Article  CAS  PubMed  Google Scholar 

  10. Orio M, Mouesca JM (2008) Variation of average g values and effective exchange coupling constants among [2Fe-2S] clusters: a density functional theory study of the impact of localization (trapping forces) versus delocalization (double-exchange) as competing factors. Inorg Chem 47:5394–5416

    Article  CAS  PubMed  Google Scholar 

  11. Stoll S, Britt RD (2009) General and efficient simulation of pulse EPR spectra. Phys Chem Chem Phys 11:6614–6625

    Article  CAS  PubMed  Google Scholar 

  12. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  CAS  PubMed  Google Scholar 

  13. Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  PubMed  Google Scholar 

  14. Perche-Letuvee P et al (2012) 4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-l-methionine enzyme with an additional [4Fe-4S](+2) cluster that interacts with the pyruvate co-substrate. J Biol Chem 287:41174–41185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Goldberg DP et al (1997) EPR spectra from “EPR-silent” species: High-field EPR spectroscopy of manganese(III) porphyrins. J Am Chem Soc 119:8722–8723

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Gambarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gambarelli, S., Maurel, V. (2014). Study of Metalloproteins Using Continuous Wave Electron Paramagnetic Resonance (EPR). In: Fontecilla-Camps, J., Nicolet, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1122. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-794-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-794-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-793-8

  • Online ISBN: 978-1-62703-794-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics