Skip to main content

Biophysical and Proteomic Characterization Strategies for Cysteine Modifications in Ras GTPases

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1120))

Abstract

Cysteine is one of the most reactive amino acids and is modified by a number of oxidants. The reactivity of cysteines is dependent on the thiol pK a; however, measuring cysteine pK a values is nontrivial. Ras family GTPases have been shown to contain a free cysteine that is sensitive to oxidation, and free radical-mediated oxidation of this cysteine has been shown to be activating. Here, we present a new technique that allows for measuring cysteine pK a values using a fluorescent detection system with the molecule 4-fluoro-7-aminosulfonylbenzofurazan (ABD-F). In addition, we also describe how to generate several oxidants. Lastly, we describe several mass spectrometry-based experiments and the necessary adjustments to the experiments to detect cysteine oxidation.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-62703-791-4_26

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-62703-791-4_26

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Netto LE, de Oliveira MA, Monteiro G et al (2007) Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol C Toxicol Pharmacol 146:180–193

    Article  PubMed  Google Scholar 

  2. Martinez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75:220–228

    Article  PubMed  CAS  Google Scholar 

  3. Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on s-glutathionylation. Antioxid Redox Signal 16:471–475

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Wang Y, Yang J, Yi J (2012) Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antioxid Redox Signal 16:649–657

    Article  PubMed  Google Scholar 

  5. Adler V, Yin Z, Tew KD et al (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18:6104–6111

    Article  PubMed  CAS  Google Scholar 

  6. Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12:746–754

    Article  PubMed  CAS  Google Scholar 

  7. Roos G, Foloppe N, Messens J (2013) Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 18:94–127

    Article  PubMed  CAS  Google Scholar 

  8. Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 8965–8972

    Article  PubMed  CAS  Google Scholar 

  9. Nelson KJ, Parsonage D, Hall A et al (2008) Cysteine pK(a) values for the bacterial peroxiredoxin AhpC. Biochemistry 47:12860–12868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Dyson HJ, Jeng MF, Tennant LL et al (1997) Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36:2622–2636

    Article  PubMed  CAS  Google Scholar 

  11. Chivers PT, Prehoda KE, Volkman BF et al (1997) Microscopic pKa values of Escherichia coli thioredoxin. Biochemistry 36:14985–14991

    Article  PubMed  CAS  Google Scholar 

  12. Tosatto SC, Bosello V, Fogolari F et al (2008) The catalytic site of glutathione peroxidases. Antioxid Redox Signal 10:1515–1526

    Article  PubMed  CAS  Google Scholar 

  13. Davis MF, Vigil D, Campbell SL (2011) Regulation of Ras proteins by reactive nitrogen species. Free Radic Biol Med 51:565–575

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Lander HM, Hajjar DP, Hempstead BL et al (1997) A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272:4323–4326

    Article  PubMed  CAS  Google Scholar 

  15. Mitchell L, Hobbs GA, Aghajanian A et al (2013) Redox regulation of ras and rho GTPases: mechanism and function. Antioxid Redox Signal 18:250–258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  17. Lancaster JR Jr (2008) Protein cysteine thiol nitrosation: maker or marker of reactive nitrogen species-induced nonerythroid cellular signaling? Nitric Oxide 19:68–72

    Article  PubMed  CAS  Google Scholar 

  18. Heo J, Campbell SL (2006) Ras regulation by reactive oxygen and nitrogen species. Biochemistry 45:2200–2210

    Article  PubMed  CAS  Google Scholar 

  19. Heo J, Campbell SL (2004) Mechanism of p21Ras S-nitrosylation and kinetics of nitric oxide-mediated guanine nucleotide exchange. Biochemistry 43:2314–2322

    Article  PubMed  CAS  Google Scholar 

  20. Lim KH, Ancrile BB, Kashatus DF et al (2008) Tumour maintenance is mediated by eNOS. Nature 452:646–649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  22. Heo J, Raines KW, Mocanu V et al (2006) Redox regulation of RhoA. Biochemistry 45:14481–14489

    Article  PubMed  CAS  Google Scholar 

  23. Aghajanian A, Wittchen ES, Campbell SL et al (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS One 4:e8045

    Article  PubMed  PubMed Central  Google Scholar 

  24. Isom DG, Marguet PR, Oas TG et al (2011) A miniaturized technique for assessing protein thermodynamics and function using fast determination of quantitative cysteine reactivity. Proteins 79:1034–1047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Chait BT (2006) Chemistry. Mass spectrometry: bottom-up or top-down? Science 314:65–66

    Article  PubMed  CAS  Google Scholar 

  26. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  27. Grossi L, Montevecchi PC (2002) S-nitrosocysteine and cystine from reaction of cysteine with nitrous acid. A kinetic investigation. J Org Chem 67:8625–8630

    Article  PubMed  CAS  Google Scholar 

  28. Moore KP, Mani AR (2002) Measurement of protein nitration and S-nitrosothiol formation in biology and medicine. Methods Enzymol 359:256–268

    Article  PubMed  CAS  Google Scholar 

  29. Gu J, Lewis RS (2007) Effect of pH and metal ions on the decomposition rate of S-nitrosocysteine. Ann Biomed Eng 35:1554–1560

    Article  PubMed  Google Scholar 

  30. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Berdniko VM, Bazhin NM (1970) Oxidation-Reduction Potentials of Certain Inorganic Radicals in Aqueous Solutions. Russ J Phys Ch Ussr 44:395–398

    Google Scholar 

  32. Chameides WL (1984) The Photochemistry of a Remote Marine Stratiform Cloud. J Geophys Res-Atmos 89:4739–4755

    Google Scholar 

  33. Gygi SP, Rist B, Gerber SA et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  34. Chiappetta G, Ndiaye S, Igbaria A et al (2010) Proteome screens for Cys residues oxidation: the redoxome. Methods Enzymol 473:199–216

    Article  PubMed  CAS  Google Scholar 

  35. Marino SM, Li Y, Fomenko DE et al (2010) Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae. Biochemistry 49:7709–7721

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Sethuraman M, Clavreul N, Huang H et al (2007) Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic Biol Med 42:823–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sethuraman M, McComb ME, Huang H et al (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3:1228–1233

    Article  PubMed  CAS  Google Scholar 

  38. Leichert LI, Gehrke F, Gudiseva HV et al (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105:8197–8202

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Chouchani ET, James AM, Fearnley IM et al (2011) Proteomic approaches to the characterization of protein thiol modification. Curr Opin Chem Biol 15:120–128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Wisniewski JR, Ostasiewicz P, Mann M (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 10:3040–3049

    Article  PubMed  CAS  Google Scholar 

  41. Wisniewski JR, Zielinska DF, Mann M (2011) Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Anal Biochem 410:307–309

    Article  PubMed  CAS  Google Scholar 

  42. Wisniewski JR, Zougman A, Mann M (2009) Combination of FASP and Stage Tip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J Proteome Res 8:5674–5678

    Article  PubMed  CAS  Google Scholar 

  43. Wisniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6: 359–362

    Article  PubMed  CAS  Google Scholar 

  44. Houk J, Singh R, Whitesides GM (1987) Measurement of thiol-disulfide interchange reactions and thiol pKa values. Methods Enzymol 143:129–140

    Article  PubMed  CAS  Google Scholar 

  45. Lukesh JC 3rd, Palte MJ, Raines RT (2012) A potent, versatile disulfide-reducing agent from aspartic acid. J Am Chem Soc 134:4057–4059

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Saville B (1958) A scheme for the colorimetric determination of microgram amounts of thiols. Analyst 83:670–672

    Article  Google Scholar 

  47. Keshive M, Singh S, Wishnok JS et al (1996) Kinetics of S-nitrosation of thiols in nitric oxide solutions. Chem Res Toxicol 9:988–993

    Article  PubMed  CAS  Google Scholar 

  48. Hobbs GA, Bonini MG, Gunawardena HP et al (2013) Glutathiolated Ras: characterization and implications for Ras activation. Free Radic Biol Med 57:221–229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Williams JG, Pappu K, Campbell SL (2003) Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Proc Natl Acad Sci U S A 100:6376–6381

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Yu Y, Xie L, Gunawardena HP et al (2012) GOFAST: an integrated approach for efficient and comprehensive membrane proteome analysis. Anal Chem 84:9008–9014

    PubMed  CAS  Google Scholar 

  51. Ford E, Hughes MN, Wardman P (2002) Kinetics of the reactions of nitrogen dioxide with glutathione, cysteine, and uric acid at physiological pH. Free Radic Biol Med 32:1314–1323

    Article  PubMed  CAS  Google Scholar 

  52. Raines KW, Bonini MG, Campbell SL (2007) Nitric oxide cell signaling: S-nitrosation of Ras superfamily GTPases. Cardiovasc Res 75:229–239

    Article  PubMed  CAS  Google Scholar 

  53. Augusto O, Bonini MG, Amanso AM et al (2002) Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 32:841–859

    Article  PubMed  CAS  Google Scholar 

  54. Keefer LK, Nims RW, Davies KM et al (1996) “NONOates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol 268:281–293

    Article  PubMed  CAS  Google Scholar 

  55. Maragos CM, Morley D, Wink DA et al (1991) Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem 34:3242–3247

    Article  PubMed  CAS  Google Scholar 

  56. Maragos CM, Wang JM, Hrabie JA et al (1993) Nitric oxide/nucleophile complexes inhibit the in vitro proliferation of A375 melanoma cells via nitric oxide release. Cancer Res 53:564–568

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dan Isom for his technical insights. The research efforts described herein were supported by NIH RO1GM75431 and RO1CA089614 to SLC, and GAH was partially funded by the Program in Molecular and Cellular Biophysics (NIH T32GM008570).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hobbs, G.A., Gunawardena, H.P., Campbell, S.L. (2014). Biophysical and Proteomic Characterization Strategies for Cysteine Modifications in Ras GTPases. In: Trabalzini, L., Retta, S. (eds) Ras Signaling. Methods in Molecular Biology, vol 1120. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-791-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-791-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-790-7

  • Online ISBN: 978-1-62703-791-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics