The Use of Primary Human Cells (Fibroblasts, Monocytes, and Others) to Assess Human Cytomegalovirus Function

  • Emma Poole
  • Matthew Reeves
  • John H. SinclairEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1119)


The extensive tropism of human cytomegalovirus (HCMV) results in the productive infection of multiple cell types within the human host. However, infection of other cell types, such as undifferentiated cells of the myeloid lineage, gives rise to nonpermissive infections. This has been used experimentally to model latent infection which is known to be established in the pluripotent CD34+ hematopoietic progenitor cell population resident in the bone marrow in vivo. The absence of a tractable animal model for studies of HCMV has resulted in a number of laboratories employing experimental infection of cells in vitro to simulate both HCMV lytic and latent infection. Herein, we will focus on the techniques used in our laboratory for the isolation and use of primary cells to study aspects of HCMV latency, reactivation, and lytic infection.

Key words

Monocytes CD34+ cells Latency Differentiation Primary cell isolation 


  1. 1.
    Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, Othieno FA, Streblow DN, Garcia JV, Fleming WH, Nelson JA (2010) Cell Host Microbe 8:284–291PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH (1991) J Gen Virol 72(Pt 9):2059–2064PubMedCrossRefGoogle Scholar
  3. 3.
    Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, Knapp W (1997) Blood 90:1425–1434PubMedGoogle Scholar
  4. 4.
    MacAry PA, Lindsay M, Scott MA, Craig JI, Luzio JP, Lehner PJ (2001) Proc Natl Acad Sci U S A 98:3982–3987PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lathey JL, Spector SA (1991) J Virol 65:6371–6375PubMedCentralPubMedGoogle Scholar
  6. 6.
    Sallusto F, Lanzavecchia A (1994) J Exp Med 179:1109–1118PubMedCrossRefGoogle Scholar
  7. 7.
    Bego M, Maciejewski J, Khaiboullina S, Pari G, St Jeor S (2005) J Virol 79:11022–11034PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Goodrum F, Reeves M, Sinclair J, High K, Shenk T (2007) Blood 110:937–945PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Roback JD, Hillyer CD, Drew WL, Laycock ME, Luka J, Mocarski ES, Slobedman B, Smith JW, Soderberg-Naucler C, Todd DS, Woxenius S, Busch MP (2001) Transfusion 41:1249–1257PubMedCrossRefGoogle Scholar
  10. 10.
    Poole E, McGregor Dallas SR, Colston J, Joseph RS, Sinclair J (2011) J Gen Virol 92:1539–1549PubMedCrossRefGoogle Scholar
  11. 11.
    Slobedman B, Mocarski ES (1999) J Virol 73:4806–4812PubMedCentralPubMedGoogle Scholar
  12. 12.
    Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH (2005) Proc Natl Acad Sci U S A 102:4140–4145PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MedicineAddenbrooke’s Hospital, University of CambridgeCambridgeUK
  2. 2.Department of MedicineUniversity of CambridgeCambridgeUK

Personalised recommendations