Advertisement

Techniques for Characterizing Cytomegalovirus-Encoded miRNAs

  • Lauren M. Hook
  • Igor Landais
  • Meaghan H. Hancock
  • Jay A. NelsonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1119)

Abstract

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, by binding to sites within the 3′ untranslated regions of messenger RNA (mRNA) transcripts. The discovery of this completely new mechanism of gene regulation necessitated the development of a variety of techniques to further characterize miRNAs, their expression, and function. In this chapter, we will discuss techniques currently used in the miRNA field to express, detect, and inhibit miRNAs as well as methods used to identify their targets.

Key words

microRNA (miRNA) Northern blot Stem-loop real-time PCR RISC immunoprecipitation (RISC-IP) Luciferase assay Locked nucleic acids (LNA) 

References

  1. 1.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  2. 2.
    Grey F, Antoniewicz A, Allen E, Saugstad J, McShea A, Carrington JC, Nelson J (2005) Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79:12095–12099PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276PubMedCrossRefGoogle Scholar
  4. 4.
    Meyer C, Grey F, Kreklywich CN, Andoh TF, Tirabassi RS, Orloff SL, Streblow DN (2011) Cytomegalovirus microRNA expression is tissue specific and is associated with persistence. J Virol 85:378–389PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hancock MH, Tirabassi RS, Nelson JA (2012) Rhesus cytomegalovirus encodes seventeen microRNAs that are differentially expressed in vitro and in vivo. Virology 425:133–142PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17:1169–1174PubMedCrossRefGoogle Scholar
  7. 7.
    Stark TJ, Arnold JD, Spector DH, Yeo GW (2012) High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86:226–235PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dolken L, Perot J, Cognat V, Alioua A, John M, Soutschek J, Ruzsics Z, Koszinowski U, Voinnet O, Pfeffer S (2007) Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81:13771–13782PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Buck AH, Santoyo-Lopez J, Robertson KA, Kumar DS, Reczko M, Ghazal P (2007) Discrete clusters of virus-encoded microRNAs are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81:13761–13770PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cullen BR (2011) Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 25:1881–1894PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 15:1151–1164CrossRefGoogle Scholar
  17. 17.
    Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell 43:892–903PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Karginov FV, Conaco C, Xuan Z, Schmidt BH, Parker JS, Mandel G, Hannon GJ (2007) A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A 104:19291–19296PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307PubMedCrossRefGoogle Scholar
  20. 20.
    Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S, Kroesen BJ, Kok K, van den Berg A (2009) A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 37:e137PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Orom UA, Lund AH (2007) Isolation of microRNA targets using biotinylated synthetic microRNAs. Methods 43:162–165PubMedCrossRefGoogle Scholar
  23. 23.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471PubMedCrossRefGoogle Scholar
  24. 24.
    Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L, Nelson JA (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6:e1000967PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp 41:2034–2038Google Scholar
  28. 28.
    Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J Vis Exp 50:2638–2642Google Scholar
  29. 29.
    Vinther J, Hedegaard MM, Gardner PP, Andersen JS, Arctander P (2006) Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res 34:e107PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Tirabassi R, Hook L, Landais I, Grey F, Meyers H, Hewitt H, Nelson J (2011) Human cytomegalovirus US7 is regulated synergistically by two virally encoded microRNAs and by two distinct mechanisms. J Virol 85:11938–11944PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  32. 32.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Grunweller A, Hartmann RK (2007) Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs 21:235–243PubMedCrossRefGoogle Scholar
  35. 35.
    Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542PubMedCrossRefGoogle Scholar
  36. 36.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk M, Kauppinen S, Ørum H (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lauren M. Hook
    • 1
  • Igor Landais
    • 1
  • Meaghan H. Hancock
    • 1
  • Jay A. Nelson
    • 2
    Email author
  1. 1.Vaccine & Gene Therapy Institute, Oregon Health and Sciences UniversityBeavertonUSA
  2. 2.Vaccine and Gene Therapy Institute, Oregon Health and Sciences UniversityBeavertonUSA

Personalised recommendations