Advertisement

Methods for Studying the Function of Cytomegalovirus GPCRs

  • Christine M. O’Connor
  • William E. MillerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1119)

Abstract

All of the cytomegaloviruses discovered to date encode two or more genes with significant homology to G-protein coupled receptors (GPCRs). The functions of these cytomegalovirus GPCRs are just beginning to be elucidated; however, it is clear that they exhibit numerous interesting activities in both in vitro and in vivo systems. In this chapter, we review the various methodologies that can be used to examine biochemical aspects of viral GPCR signaling in vitro as well as examine the biological activity of these viral GPCRs in vitro and in vivo in virus infected cells using recombinant cytomegaloviruses.

Key words

G-protein coupled receptors Human cytomegalovirus Murine cytomegalovirus Virus genetics Signal transduction Virological methods 

References

  1. 1.
    Khanna R, Diamond DJ (2006) Human cytomegalovirus vaccine: time to look for alternative options. Trends Mol Med 12:26–33PubMedCrossRefGoogle Scholar
  2. 2.
    Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, Horsnell T, Hutchison CA 3rd, Kouzarides T, Martignetti JA et al (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169PubMedGoogle Scholar
  3. 3.
    Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG (1990) Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344:774–777PubMedCrossRefGoogle Scholar
  4. 4.
    Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94PubMedCrossRefGoogle Scholar
  5. 5.
    Sodhi A, Montaner S, Gutkind JS (2004) Does dysregulated expression of a deregulated viral GPCR trigger Kaposi's sarcomagenesis? FASEB J 18:422–427PubMedCrossRefGoogle Scholar
  6. 6.
    Miller-Kittrell M, Sparer TE (2009) Feeling manipulated: cytomegalovirus immune manipulation. Virol J 6:4PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137PubMedCrossRefGoogle Scholar
  8. 8.
    Kuhn DE, Beall CJ, Kolattukudy PE (1995) The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 211:325–330PubMedCrossRefGoogle Scholar
  9. 9.
    Waldhoer M, Kledal TN, Farrell H, Schwartz TW (2002) Murine cytomegalovirus (CMV) M33 and human CMV US28 receptors exhibit similar constitutive signaling activities. J Virol 76:8161–8168PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Minisini R, Tulone C, Luske A, Michel D, Mertens T, Gierschik P, Moepps B (2003) Constitutive inositol phosphate formation in cytomegalovirus-infected human fibroblasts is due to expression of the chemokine receptor homologue pUS28. J Virol 77:4489–4501PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gao JL, Murphy PM (1994) Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 269:28539–28542PubMedGoogle Scholar
  12. 12.
    Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, Verzijl D, Bruggeman CA, Mertens T, Leurs R, Vink C, Smit MJ (2003) Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem 278:50010–50023PubMedCrossRefGoogle Scholar
  13. 13.
    Gruijthuijsen YK, Casarosa P, Kaptein SJ, Broers JL, Leurs R, Bruggeman CA, Smit MJ, Vink C (2002) The rat cytomegalovirus R33-encoded G protein-coupled receptor signals in a constitutive fashion. J Virol 76:1328–1338PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Sherrill JD, Miller WE (2006) G protein-coupled receptor (GPCR) kinase 2 regulates agonist-independent Gq/11 signaling from the mouse cytomegalovirus GPCR M33. J Biol Chem 281:39796–39805PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Davis-Poynter NJ, Lynch DM, Vally H, Shellam GR, Rawlinson WD, Barrell BG, Farrell HE (1997) Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J Virol 71:1521–1529PubMedCentralPubMedGoogle Scholar
  16. 16.
    Case R, Sharp E, Benned-Jensen T, Rosenkilde MM, Davis-Poynter N, Farrell HE (2008) Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: ablation of constitutive signaling is associated with an attenuated phenotype in vivo. J Virol 82:1884–1898PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Cardin RD, Schaefer GC, Allen JR, Davis-Poynter NJ, Farrell HE (2009) The M33 chemokine receptor homolog of murine cytomegalovirus exhibits a differential tissue-specific role during in vivo replication and latency. J Virol 83:7590–7601PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Sherrill JD, Stropes MP, Schneider OD, Koch DE, Bittencourt FM, Miller JL, Miller WE (2009) Activation of intracellular signaling pathways by the murine cytomegalovirus G protein-coupled receptor M33 occurs via PLC-{beta}/PKC-dependent and -independent mechanisms. J Virol 83:8141–8152PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Beisser PS, Vink C, Van Dam JG, Grauls G, Vanherle SJ, Bruggeman CA (1998) The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363PubMedCentralPubMedGoogle Scholar
  20. 20.
    Margulies BJ, Browne H, Gibson W (1996) Identification of the human cytomegalovirus G protein-coupled receptor homologue encoded by UL33 in infected cells and enveloped virus particles. Virology 225:111–125PubMedCrossRefGoogle Scholar
  21. 21.
    O’Connor CM, Shenk T. Unpublished observationsGoogle Scholar
  22. 22.
    Oliveira SA, Shenk TE (2001) Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci U S A 98:3237–3242PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Beisser PS, Grauls G, Bruggeman CA, Vink C (1999) Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73:7218–7230PubMedCentralPubMedGoogle Scholar
  24. 24.
    O’Connor CM, Shenk T (2012) Human cytomegalovirus pUL78 G protein-coupled receptor homologue is required for timely cell entry in epithelial cells but not fibroblasts. J Virol 86:11425–11433Google Scholar
  25. 25.
    Michel D, Milotic I, Wagner M, Vaida B, Holl J, Ansorge R, Mertens T (2005) The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol 86:297–306PubMedCrossRefGoogle Scholar
  26. 26.
    O’Connor CM, Shenk T (2011) Human cytomegalovirus pUS27 G protein-coupled receptor homologue is required for efficient spread by the extracellular route but not for direct cell-to-cell spread. J Virol 85:3700–3707PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett 441:209–214PubMedCrossRefGoogle Scholar
  28. 28.
    Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, Arenzana-Seisdedos F, Virelizier JL, Michelson S (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Vieira J, Schall TJ, Corey L, Geballe AP (1998) Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72:8158–8165PubMedCentralPubMedGoogle Scholar
  30. 30.
    Billstrom MA, Johnson GL, Avdi NJ, Worthen GS (1998) Intracellular signaling by the chemokine receptor US28 during human cytomegalovirus infection. J Virol 72:5535–5544PubMedCentralPubMedGoogle Scholar
  31. 31.
    Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520PubMedCrossRefGoogle Scholar
  32. 32.
    Stropes MP, Schneider OD, Zagorski WA, Miller JL, Miller WE (2009) The carboxy-terminal tail of human cytomegalovirus (HCMV) US28 regulates both chemokine-independent and chemokine-dependent signaling in HCMV-infected cells. J Virol 83:10016–10027PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Melnychuk RM, Streblow DN, Smith PP, Hirsch AJ, Pancheva D, Nelson JA (2004) Human cytomegalovirus-encoded G protein-coupled receptor US28 mediates smooth muscle cell migration through Galpha12. J Virol 78:8382–8391PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Moepps B, Tulone C, Kern C, Minisini R, Michels G, Vatter P, Wieland T, Gierschik P (2008) Constitutive serum response factor activation by the viral chemokine receptor homologue pUS28 is differentially regulated by Galpha(q/11) and Galpha(16). Cell Signal 20:1528–1537PubMedCrossRefGoogle Scholar
  35. 35.
    Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Soderberg-Naucler C, Smit MJ (2010) HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 3:ra58PubMedGoogle Scholar
  36. 36.
    Soroceanu L, Matlaf L, Bezrookove V, Harkins L, Martinez R, Greene M, Soteropoulos P, Cobbs CS (2011) Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res 71:6643–6653PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Boomker JM, The TH, de Leij LF, Harmsen MC (2006) The human cytomegalovirus-encoded receptor US28 increases the activity of the major immediate-early promoter/enhancer. Virus Res 118:196–200PubMedCrossRefGoogle Scholar
  38. 38.
    McLean KA, Holst PJ, Martini L, Schwartz TW, Rosenkilde MM (2004) Similar activation of signal transduction pathways by the herpesvirus-encoded chemokine receptors US28 and ORF74. Virology 325:241–251PubMedCrossRefGoogle Scholar
  39. 39.
    Maussang D, Verzijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GA, Smit MJ (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci U S A 103:13068–13073PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Maussang D, Langemeijer E, Fitzsimons CP, Stigter-van Walsum M, Dijkman R, Borg MK, Slinger E, Schreiber A, Michel D, Tensen CP, van Dongen GA, Leurs R, Smit MJ (2009) The human cytomegalovirus-encoded chemokine receptor US28 promotes angiogenesis and tumor formation via cyclooxygenase-2. Cancer Res 69:2861–2869PubMedCrossRefGoogle Scholar
  41. 41.
    Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, Khan Z, Sveinbjornsson B, FuskevAg OM, Segerstrom L, Nordenskjold M, Siesjo P, Kogner P, Johnsen JI, Soderberg-Naucler C (2011) Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest 121:4043–4055PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Casarosa P, Menge WM, Minisini R, Otto C, van Heteren J, Jongejan A, Timmerman H, Moepps B, Kirchhoff F, Mertens T, Smit MJ, Leurs R (2003) Identification of the first nonpeptidergic inverse agonist for a constitutively active viral-encoded G protein-coupled receptor. J Biol Chem 278:5172–5178PubMedCrossRefGoogle Scholar
  43. 43.
    Stropes MP, Miller WE (2008) Functional analysis of human cytomegalovirus pUS28 mutants in infected cells. J Gen Virol 89:97–105PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Waldhoer M, Casarosa P, Rosenkilde MM, Smit MJ, Leurs R, Whistler JL, Schwartz TW (2003) The carboxyl terminus of human cytomegalovirus-encoded 7 transmembrane receptor US28 camouflages agonism by mediating constitutive endocytosis. J Biol Chem 278:19473–19482PubMedCrossRefGoogle Scholar
  45. 45.
    Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ (2001) Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem 276:27770–27777PubMedCrossRefGoogle Scholar
  46. 46.
    Maussang D, Vischer HF, Schreiber A, Michel D, Smit MJ (2009) Pharmacological and biochemical characterization of human cytomegalovirus-encoded G protein-coupled receptors. Methods Enzymol 460:151–171PubMedCrossRefGoogle Scholar
  47. 47.
    Brune W, Messerle M, Koszinowski UH (2000) Forward with BACs: new tools for herpesvirus genomics. Trends Genet 16:254–259PubMedCrossRefGoogle Scholar
  48. 48.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197PubMedCrossRefGoogle Scholar
  51. 51.
    Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368PubMedCrossRefGoogle Scholar
  52. 52.
    Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, Zhu H, Liu F (2003) Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100:14223–14228PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Yu D, Silva MC, Shenk T (2003) Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci U S A 100:12396–12401PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Margulies BJ, Gibson W (2007) The chemokine receptor homologue encoded by US27 of human cytomegalovirus is heavily glycosylated and is present in infected human foreskin fibroblasts and enveloped virus particles. Virus Res 123:57–71PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Mokros T, Rehm A, Droese J, Oppermann M, Lipp M, Hopken UE (2002) Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J Biol Chem 277:45122–45128PubMedCrossRefGoogle Scholar
  56. 56.
    Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–232PubMedCrossRefGoogle Scholar
  57. 57.
    Droese J, Mokros T, Hermosilla R, Schulein R, Lipp M, Hopken UE, Rehm A (2004) HCMV-encoded chemokine receptor US28 employs multiple routes for internalization. Biochem Biophys Res Commun 322:42–49PubMedCrossRefGoogle Scholar
  58. 58.
    Penfold ME, Schmidt TL, Dairaghi DJ, Barry PA, Schall TJ (2003) Characterization of the rhesus cytomegalovirus US28 locus. J Virol 77:10404–10413PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Pleskoff O, Casarosa P, Verneuil L, Ainoun F, Beisser P, Smit M, Leurs R, Schneider P, Michelson S, Ameisen JC (2005) The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS J 272:4163–4177PubMedCrossRefGoogle Scholar
  60. 60.
    Pleskoff O, Treboute C, Alizon M (1998) The cytomegalovirus-encoded chemokine receptor US28 can enhance cell-cell fusion mediated by different viral proteins. J Virol 72:6389–6397PubMedCentralPubMedGoogle Scholar
  61. 61.
    Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alizon M (1997) Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science 276:1874–1878PubMedCrossRefGoogle Scholar
  62. 62.
    Vomaske J, Melnychuk RM, Smith PP, Powell J, Hall L, DeFilippis V, Fruh K, Smit M, Schlaepfer DD, Nelson JA, Streblow DN (2009) Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility. PLoS Pathog 5:e1000304PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Casarosa P, Waldhoer M, LiWang PJ, Vischer HF, Kledal T, Timmerman H, Schwartz TW, Smit MJ, Leurs R (2005) CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor. J Biol Chem 280:3275–3285PubMedCrossRefGoogle Scholar
  64. 64.
    Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M (2011) Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 82:610–619PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Farrell HE, Abraham AM, Cardin RD, Sparre-Ulrich AH, Rosenkilde MM, Spiess K, Jensen TH, Kledal TN, Davis-Poynter N (2011) Partial functional complementation between human and mouse cytomegalovirus chemokine receptor homologues. J Virol 85:6091–6095PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Redwood AJ, Messerle M, Harvey NL, Hardy CM, Koszinowski UH, Lawson MA, Shellam GR (2005) Use of a murine cytomegalovirus K181-derived bacterial artificial chromosome as a vaccine vector for immunocontraception. J Virol 79:2998–3008PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 94:14759–14763PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Lee SH, Girard S, Macina D, Busa M, Zafer A, Belouchi A, Gros P, Vidal SM (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat Genet 28:42–45PubMedGoogle Scholar
  69. 69.
    Webb JR, Lee SH, Vidal SM (2002) Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match. Genes Immun 3:250–262PubMedCrossRefGoogle Scholar
  70. 70.
    Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–313PubMedCrossRefGoogle Scholar
  71. 71.
    Ghazal P, Messerle M, Osborn K, Angulo A (2003) An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol 77:3217–3228PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Pollock JL, Virgin HW IV (1995) Latency, without persistence, of murine cytomegalovirus in the spleen and kidney. J Virol 69:1762–1768PubMedCentralPubMedGoogle Scholar
  73. 73.
    Okada M, Minamishima Y (1987) The efficacy of biological response modifiers against murine cytomegalovirus infection in normal and immunodeficient mice. Microbiol Immunol 31:45–57PubMedCrossRefGoogle Scholar
  74. 74.
    Kaptein SJ, Beisser PS, Gruijthuijsen YK, Savelkouls KG, van Cleef KW, Beuken E, Grauls GE, Bruggeman CA, Vink C (2003) The rat cytomegalovirus R78 G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 84:2517–2530PubMedCrossRefGoogle Scholar
  75. 75.
    Miller WE, Zagorski WA, Brenneman JD, Avery D, Miller JL, O’Connor CM (2012) US28 is a potent activator of phospholipase C during HCMV infection of clinically relevant target cells. PLoS One 7(11):e50524Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Section of Virology, Department of Molecular Genetics, Lerner Research InstituteThe Cleveland ClinicClevelandUSA
  2. 2.Department of Molecular Genetics, Biochemistry, and MicrobiologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations