Skip to main content

Cell-Free Translation of Biofuel Enzymes

  • Protocol
  • First Online:
Cell-Free Protein Synthesis

Abstract

In nature, bacteria and fungi are able to utilize recalcitrant plant materials by secreting a diverse set of enzymes. While genomic sequencing efforts offer exhaustive lists of genes annotated as potential polysaccharide-degrading enzymes, biochemical and functional characterizations of the encoded proteins are still needed to realize the full potential of this natural genomic diversity. This chapter outlines an application of wheat germ cell-free translation to the study of biofuel enzymes using genes from Clostridium thermocellum, a model cellulolytic organism. Since wheat germ extract lacks enzymatic activities that can hydrolyze insoluble polysaccharide substrates and is likewise devoid of enzymes that consume the soluble sugar products, the cell-free translation reactions provide a clean background for production and study of the reactions of biofuel enzymes. Examples of assays performed with individual enzymes or with small sets of enzymes obtained directly from cell-free translation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dale BE (2011) Cellulosic biofuels and the road to energy security. Environ Sci Technol 45:9823

    Article  CAS  PubMed  Google Scholar 

  2. Hall CAS, Klitgaard KA (2012) Energy and the wealth of nations: understanding the biophysical economy. Springer, Seacaucus, NJ 07096-2485. ISBN 978-1-4419-9397-7

    Google Scholar 

  3. Li C, Cheng G, Balan V et al (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–6936

    Article  CAS  PubMed  Google Scholar 

  4. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  PubMed  Google Scholar 

  5. Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Vuong TV, Wilson DB (2010) Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnol Bioeng 107:195–205

    Article  CAS  PubMed  Google Scholar 

  8. Gao D, Uppugundla N, Chundawat SP et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63:1568–1576

    Article  CAS  PubMed  Google Scholar 

  11. Bayer EA, Lamed R, White BA et al (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377

    Article  CAS  PubMed  Google Scholar 

  12. Riederer A, Takasuka TE, Makino S et al (2011) Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 77:1243–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Raman B, Pan C, Hurst GB et al (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4:e5271

    Article  PubMed Central  PubMed  Google Scholar 

  14. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649

    Article  CAS  PubMed  Google Scholar 

  15. Mingardon F, Chanal A, Lopez-Contreras AM et al (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Morais S, Barak Y, Caspi J et al (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1

    Google Scholar 

  17. Blommel PG, Martin PA, Wrobel RL et al (2006) High efficiency single step production of expression plasmids from cDNA clones using the Flexi Vector cloning system. Protein Expr Purif 47:562–570

    Article  CAS  PubMed  Google Scholar 

  18. Sawasaki T, Ogasawara T, Morishita R et al (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 99:14652–14657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gallie DR, Sleat DE, Watts JW et al (1987) The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15:3257–3273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gay P, Le Coq D, Steinmetz M et al (1985) Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164:918–921

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Blommel PG, Fox BG (2007) A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr Purif 55:53–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Beebe ET, Makino S, Nozawa A et al (2011) Robotic large-scale application of wheat cell-free translation to structural studies including membrane proteins. N Biotechnol 28:239–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Vantilbeurgh H, Claeyssens M, Debruyne CK (1982) The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett 149:152–156

    Article  CAS  Google Scholar 

  24. Potier M, Mameli L, Belisle M et al (1979) Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetyl-neuraminate) substrate. Anal Biochem 94:287–296

    Article  CAS  PubMed  Google Scholar 

  25. Chundawat SP, Balan V, Dale BE (2008) High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 99:1281–1294

    Article  CAS  PubMed  Google Scholar 

  26. Sharrock KR (1988) Cellulase assay methods: a review. J Biochem Biophys Methods 17:81–105

    Article  CAS  PubMed  Google Scholar 

  27. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  28. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sawasaki T, Hasegawa Y, Tsuchimochi M et al (2002) A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 514:102–105

    Article  CAS  PubMed  Google Scholar 

  30. Edwards RA, Jickling G, Turner RJ (2002) The light-induced reactions of tryptophan with halocompounds. Photochem Photobiol 75:362–368

    Article  CAS  PubMed  Google Scholar 

  31. Kazmin D, Edwards RA, Turner RJ et al (2002) Visualization of proteins in acrylamide gels using ultraviolet illumination. Anal Biochem 301:91–96

    Article  CAS  PubMed  Google Scholar 

  32. Ladner CL, Yang J, Turner RJ et al (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326:13–20

    Article  CAS  PubMed  Google Scholar 

  33. Balan V, Bals B, Chundawat SP et al (2009) Lignocellulosic biomass pretreatment using AFEX. Methods Mol Biol 581:61–77

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Knierim B, Manisseri C, Arora R et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  PubMed  Google Scholar 

  35. Kapust RB, Tozser J, Copeland TD et al (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955

    Article  CAS  PubMed  Google Scholar 

  36. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  37. Goshima N, Kawamura Y, Fukumoto A et al (2008) Human protein factory for converting the transcriptome into an in vitro-expressed proteome. Nat Methods 5:1011–1017

    Article  CAS  PubMed  Google Scholar 

  38. Weimer PJ, Lopez-Guisa JM, French AD (1990) Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro. Appl Environ Microbiol 56:2421–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The authors thank researchers in the University of Wisconsin Center for Eukaryotic Structural Genomics for advice and timely access to protocols and equipment (NIGMS U54 GM074901, U54 GM094584, U01 GM094622; J.L. Markley, G.N Phillips, B.G. Fox). The authors thank Dr. Paul Weimer (University of Wisconsin–Madison, Dept. of Bacteriology) for his scientific insights and the generous gifts of phosphoric acid-swollen cellulose and C. thermocellum genomic DNA, Dr. Bruce Dale for the generous gift of AFEX-pretreated switchgrass, Dr. Masood Hadi for the generous gift of ionic liquid-pretreated switchgrass, and Dr. George Phillips and Dr. Chris Bianchetti (Great Lakes Bioenergy Research Center) for the X-ray diffraction analysis of some cellulose substrates.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Takasuka, T.E. et al. (2014). Cell-Free Translation of Biofuel Enzymes. In: Alexandrov, K., Johnston, W. (eds) Cell-Free Protein Synthesis. Methods in Molecular Biology, vol 1118. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-782-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-782-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-781-5

  • Online ISBN: 978-1-62703-782-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics