Skip to main content

Bioinformatics Analysis and Optimization of Cell-Free Protein Synthesis

  • Protocol
  • First Online:
Cell-Free Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1118))

Abstract

Cell-free protein synthesis offers substantial advantages over cell-based expression, allowing direct access to the protein synthetic reaction and meticulous control over the reaction conditions. Recently, we identified a number of statistically significant correlations between calculated and predicted properties of amino acid sequences and their amenability to heterologous cell-free expression. These correlations can be of practical use for predicting expression success and optimizing cell-free protein synthesis. In this chapter, we describe our approach and demonstrate how computational and predictive bioinformatics can be used to analyze and optimize cell-free protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43

    Article  CAS  PubMed  Google Scholar 

  2. Marsden RL, Orengo CA (2008) Target selection for structural genomics: an overview. Methods Mol Biol 426:3–25

    Article  CAS  PubMed  Google Scholar 

  3. Farokki N, Hrmova M, Burton RA et al (2009) Heterologous and cell-free protein expression systems. Methods Mol Biol 513:175–198

    Article  Google Scholar 

  4. Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22:538–545

    Article  CAS  PubMed  Google Scholar 

  5. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23:150–156

    Article  CAS  PubMed  Google Scholar 

  6. He M (2008) Cell-free protein synthesis: applications in proteomics and biotechnology. Nat Biotechnol 23:126–132

    Google Scholar 

  7. Goh CS et al (2004) Mining the structural genomics pipeline: identification of protein properties that effect high-throughput experimental analysis. J Mol Biol 336:115–130

    Article  CAS  PubMed  Google Scholar 

  8. Bertone P, Kluger Y, Lan N et al (2001) SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics. Nucleic Acids Res 29:2884–2898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dyson MR, Shadbolt SP, Vincent KJ et al (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol 4:32

    Article  PubMed Central  PubMed  Google Scholar 

  10. Idicula-Thomas S, Balaji P (2005) Understanding the relationships between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14:582–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kurotani A, Takagi T, Toyama M et al (2010) Comprehensive bioinformatics analysis of cell-free protein synthesis: identification of multiple protein properties that correlate with successful expression. FASEB J 24:1095–1104

    Article  CAS  PubMed  Google Scholar 

  12. Tokmakov AA, Kurotani A, Takagi T et al (2012) Multiple post-translational modifications affect heterologous protein synthesis. J Biol Chem 287:27106–27116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kigawa T, Yabuki T, Yoshida Y et al (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett 442:15–19

    Article  CAS  PubMed  Google Scholar 

  14. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem 110:166–168

    CAS  PubMed  Google Scholar 

  15. Kudlicki W, Kramer G, Hardesty B (1992) High efficiency cell-free synthesis of proteins: refinement of the coupled transcription/translation system. Anal Biochem 206:389–393

    Article  CAS  PubMed  Google Scholar 

  16. Yokoyama S, Hirota H, Kigawa T et al (2000) Structural genomics projects in Japan. Nat Struct Biol 7(Suppl):943–945

    Article  CAS  PubMed  Google Scholar 

  17. Yokoyama S (2005) Large-scale structural proteomics project at RIKEN: present and future. Tanpakushitsu Kakusan Koso 50:836–845

    CAS  PubMed  Google Scholar 

  18. Yokoyama S, Kigawa T, Shirouzu M et al (2008) RIKEN structural genomics/proteomics initiative. Tanpakushitsu Kakusan Koso 53:632–637

    CAS  PubMed  Google Scholar 

  19. Yabuki T, Motoda Y, Hanada K et al (2007) A robust two-step PCR method of template DNA production for high-throughput cell-free protein synthesis. J Struct Funct Genom 8:173–191

    Article  CAS  Google Scholar 

  20. Kigawa T, Matsuda T, Yabuki T et al (2008) Bacterial cell-free system for highly efficient protein synthesis. In: Spirin AS, Swartz JR (eds) Cell-free protein synthesis. Wiley, Weinheim, pp 83–97

    Google Scholar 

  21. Kigawa T (2010) Analysis of protein functions through a bacterial cell-free protein expression system. Methods Mol Biol 607:53–62

    Article  CAS  PubMed  Google Scholar 

  22. Kigawa T, Yabuki T, Matsuda N et al (2004) Preparation of Escherichia coli extract for highly productive cell-free protein expression. J Struct Funct Genom 5:63–68

    Article  CAS  Google Scholar 

  23. Davanloo P, Rosenberg AH, Dunn JJ et al (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 81:2035–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Grodberg J, Dunn JJ (1988) ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170:1245–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Zawadski V, Gross HJ (1991) Rapid and simple purification of T7 RNA polymerase. Nucleic Acids Res 19:1948

    Article  Google Scholar 

  26. Ding HT, Ren H, Cheng Q et al (2002) Parallel cloning, expression, purification, and crystallization of human proteins for structural genomics. Acta Crystallogr D Biol Crystallogr 58:2102–2108

    Article  PubMed  Google Scholar 

  27. Cheng J, Randall AZ, Sweredoski MJ et al (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33(Web Server issue):72–76

    Article  Google Scholar 

  28. Frishman D, Argos P (1997) Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27:329–335

    Article  CAS  PubMed  Google Scholar 

  29. Yang ZR, Thomson R, McMeil P et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    Article  CAS  PubMed  Google Scholar 

  30. Ren J, Wen L, Gao X et al (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cheng J, Saigo H, Baldi P (2006) Large-scale prediction of disulfide bridges using kernel methods, two-dimensional recursive neural networks, and weighed graph matching. Proteins 62:617–629

    Article  CAS  PubMed  Google Scholar 

  32. Radivojac P, Vacic V, Haynes C et al (2010) Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78:365–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ren J, Gao X, Jin C et al (2009) Systematic study of protein sumoylation: development of a site-specific predictor of SUMPsp 2.0. Proteomics 9:3409–3412

    Article  CAS  PubMed  Google Scholar 

  34. Gao J, Liao J, Yang GY (2009) CAAX-box protein, prenylation process and carcinogenesis. Am J Transl Res 25:312–325

    Google Scholar 

  35. Amaya M, Baranova A, van Hoek ML (2011) Protein prenylation: a new mode of host-pathogen reaction. Biochem Biophys Res Commun 416:1–6

    Article  CAS  PubMed  Google Scholar 

  36. Xu B, Feng X, Burdine RD (2010) Categorical data analysis in experimental biology. Dev Biol 348:3–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Betton JM, Miot M (2008) Cell-free production of membrane proteins in the presence of detergents. In: Spirin AS, Swartz JR (eds) Cell-free protein synthesis: methods and protocols. Wiley, Weinheim, pp 165–178

    Google Scholar 

  38. Ishihara G, Goto M, Saeki M et al (2005) Expression of G-protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr Purif 41:27–37

    Article  CAS  PubMed  Google Scholar 

  39. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes. J Cell Biol 164:341–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kim DM, Swartz JR (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol Bioeng 85:122–129

    Article  CAS  PubMed  Google Scholar 

  41. Yin G, Swartz JR (2004) Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol Bioeng 86:188–195

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Kanter G, Voloshin A et al (2004) Expression of active murine granulocyte-macrophage colony-stimulating factor in an Escherichia coli cell-free system. Biotechnol Prog 20:1689–1696

    Article  CAS  PubMed  Google Scholar 

  43. Kukimoto-Niino M, Tokmakov A, Terada T et al (2011) Inhibitor-bound structures of human pyruvate dehydrogenase kinase. Acta Crystallogr D Biol Crystallogr 67:763–773

    Article  CAS  PubMed  Google Scholar 

  44. Suyama M, Ohara O (2003) DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics 19:673–674

    Article  CAS  PubMed  Google Scholar 

  45. Norman GR, Streiner DL (2000) Biostatistics: the bare essentials. B.C. Decker, Hamilton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tokmakov, A.A., Kurotani, A., Shirouzu, M., Fukami, Y., Yokoyama, S. (2014). Bioinformatics Analysis and Optimization of Cell-Free Protein Synthesis. In: Alexandrov, K., Johnston, W. (eds) Cell-Free Protein Synthesis. Methods in Molecular Biology, vol 1118. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-782-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-782-2_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-781-5

  • Online ISBN: 978-1-62703-782-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics