Skip to main content

Functional Evolution of Opioid Family G Protein-Coupled Receptors

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Opioid receptors are a family of receptors that belong to the type A GPCR group. Opioid receptors mediate a large myriad of physiological responses in different vertebrate species. There is evidence for the existence of opioid receptors from very early in evolution, and here we discuss a possible evolutionary path for their development. The physiological characteristics of the endogenous opioid system as well as the biochemical and pharmacological properties of these receptors are analyzed from an evolutionary viewpoint. Bioinformatic analysis from several groups supports the double whole-genome duplication (2R) theory, which in the case of the opioid receptor family resulted in the formation of four opioid receptors from one common ancestral gene. In the present chapter, we show the existence of a correlation between the bioinformatic analyses, the physiological characteristics, and the biochemical analyses of opioid receptors from different species throughout vertebrate evolution. The comparative pharmacological and biochemical analysis of opioid receptors from different species supports our hypothesis of the mechanism of an evolutionary vector that increases type selectivity of opioid receptors. The current literature provides experimental support to the evolutionary model that is derived from bioinformatics. According to this model, mu and delta opioid receptors share a common ancestral origin, and the mu opioid receptor exhibits positive selection and an accelerated rate of molecular evolutionary. Comparative pharmacology and biochemistry also provide functional links between the kappa opioid receptor and the nociceptin/orphanin FQ receptor (NOP) that suggests a common ancestral origin, further supporting the 2R theory applied to the family of opioid receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fredriksson R, Lagerstrom MC, Lundin LG (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  2. Kroeze WK, Sheffler DJ, Roth BL (2003) G-protein-coupled receptors at a glance. J Cell Sci 116:4867–4869

    Article  CAS  PubMed  Google Scholar 

  3. Ferguson SS, Downey WE III, Colapietro AM et al (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    Article  CAS  PubMed  Google Scholar 

  4. Shenoy SK, Drake MT, Nelson CD et al (2006) Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273

    Article  CAS  PubMed  Google Scholar 

  5. Martin WR, Eades CG, Thompson JA et al (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    CAS  PubMed  Google Scholar 

  6. Lord JA, Waterfield AA, Hughes J et al (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    Article  CAS  PubMed  Google Scholar 

  7. Hughes J, Smith T, Morgan B et al (1975) Purification and properties of enkephalin – the possible endogenous ligand for the morphine receptor. Life Sci 16:1753–1758

    Article  CAS  PubMed  Google Scholar 

  8. Li CH, Chung D, Doneen BA (1976) Isolation, characterization and opiate activity of beta-endorphin from human pituitary glands. Biochem Biophys Res Commun 72:1542–1547

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein A, Tachibana S, Lowney LI et al (1979) Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci U S A 76:6666–6670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Stevens CW (2009) The evolution of vertebrate opioid receptors. Front Biosci 14:1247–1269

    Article  CAS  Google Scholar 

  11. Bodnar RJ (2007) Endogenous opiates and behavior: 2006. Peptides 28:2435–2513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Portoghese PS, Sultana M, Takemori AE (1988) Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol 146:185–186

    Article  CAS  PubMed  Google Scholar 

  13. Takemori AE, Ho BY, Naeseth JS et al (1988) Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther 246:255–258

    Google Scholar 

  14. Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological profiles of beta-funaltrexamine (beta-FNA) and beta-chlornaltrexamine (beta-CNA) on the mouse vas deferens preparation. Eur J Pharmacol 80:377–384

    Article  CAS  PubMed  Google Scholar 

  15. Evans CJ, Keith DE, Morrison H et al (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    Article  CAS  PubMed  Google Scholar 

  16. Kieffer BL, Befort K, Gaveriaux-Ruff C et al (1992) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89:12048–12052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang JB, Johnson PS, Persico AM et al (1994) Human mu opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett 338:217–222

    Article  CAS  PubMed  Google Scholar 

  18. Knapp RJ, Malatynska E, Fang L et al (1994) Identification of a human delta opioid receptor: cloning and expression. Life Sci 54:PL463–PL469

    Article  CAS  PubMed  Google Scholar 

  19. Simonin F, Befort K, Gaveriaux-Ruff C (1994) The human delta-opioid receptor: genomic organization, cDNA cloning, functional expression, and distribution in human brain. Mol Pharmacol 46:1015–1021

    CAS  PubMed  Google Scholar 

  20. Mansson E, Bare L, Yang D (1994) Isolation of a human kappa opioid receptor cDNA from placenta. Biochem Biophys Res Commun 202:1431–1437

    Article  CAS  PubMed  Google Scholar 

  21. Zhu J, Chen C, Xue JC et al (1995) Cloning of a human kappa opioid receptor from the brain. Life Sci 56:PL201–PL207

    Article  CAS  PubMed  Google Scholar 

  22. Bunzow JR, Saez C, Mortrud M et al (1994) Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett 347:284–288

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Fan Y, Liu J et al (1994) Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett 347:279–283

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda K, Kato S, Mori K et al (1994) cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 343:42–46

    Article  CAS  PubMed  Google Scholar 

  25. Mollereau C, Parmentier M, Mailleux P et al (1994) ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341:33–38

    Article  CAS  PubMed  Google Scholar 

  26. Meunier JC, Mollereau C, Toll L et al (1995) Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535

    Article  CAS  PubMed  Google Scholar 

  27. Reinscheid RK, Nothacker HP, Bourson A et al (1995) Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270:792–794

    Article  CAS  PubMed  Google Scholar 

  28. Mogil JS, Pasternak GW (2001) The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev 53:381–415

    CAS  PubMed  Google Scholar 

  29. Katritch V, Cherezov V, Stevens RC (2012) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    Article  PubMed Central  PubMed  Google Scholar 

  30. Granier S, Manglik A, Kruse AC et al (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485:400–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the mu-opioid receptor bound to a morphinan antagonist. Nature 485:321–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Thompson AA, Liu W, Chun E et al (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wu H, Wacker D, Mileni M et al (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure function relations in G protein-coupled receptors. In: Sealfon SC, Conn PM (eds) Methods in neurosciences. Academic/Elsevier, Amsterdam

    Google Scholar 

  35. Filizola M, Devi LA (2013) Grand opening of structure-guided design for novel opioids. Trends Pharmacol Sci 34:6–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837

    Article  CAS  PubMed  Google Scholar 

  37. Kondrashov FA, Rogozin IB, Wolf YI et al (2002) Selection in the evolution of gene duplications. Genome Biol 3: RESEARCH0008

    Google Scholar 

  38. Dreborg S, Sundstrom G, Larsson TA et al (2008) Evolution of vertebrate opioid receptors. Proc Natl Acad Sci U S A 105:15487–15492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Coulier F, Popovici C, Villet R et al (2000) MetaHox gene clusters. J Exp Zool 288:345–351

    Article  CAS  PubMed  Google Scholar 

  40. Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications – the adventure of a hypothesis. Trends Genet 21:559–567

    Article  CAS  PubMed  Google Scholar 

  41. Sundstrom G, Dreborg S, Larhammar D (2010) Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS One 5:e10512

    Article  PubMed Central  PubMed  Google Scholar 

  42. Stevens CW (1992) Alternatives to the use of mammals for pain research. Life Sci 50:901–912

    Article  CAS  PubMed  Google Scholar 

  43. Stevens CW (2004) Opioid research in amphibians: an alternative pain model yielding insights on the evolution of opioid receptors. Brain Res Brain Res Rev 46:204–215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Stevens CW (2008) Non-mammalian models for the study of pain, in sourcebook of models for biomedical research. In: Conn M (ed) Sourcebook of models for biomedical research. Humana Press/Springer, New York

    Google Scholar 

  45. Stevens CW, Klopp AJ, Facello JA (1994) Analgesic potency of mu and kappa opioids after systemic administration in amphibians. J Pharmacol Exp Ther 269:1086–1093

    CAS  PubMed  Google Scholar 

  46. Stevens CW (1996) Relative analgesic potency of mu, delta and kappa opioids after spinal administration in amphibians. J Pharmacol Exp Ther 276:440–448

    CAS  PubMed  Google Scholar 

  47. Stevens CW, Newman LC (1999) Spinal administration of selective opioid antagonists in amphibians: evidence for an opioid unireceptor. Life Sci 64:PL125–PL130

    Article  CAS  PubMed  Google Scholar 

  48. Stevens CW (2003) Opioid research in amphibians: a unique perspective on mechanisms of opioid analgesia and the evolution of opioid receptors. Rev Analg 7:69–82

    Article  CAS  Google Scholar 

  49. Bird DJ, Jackson M, Baker BI et al (1988) Opioid binding sites in the fish brain: an autoradiographic study. Gen Comp Endocrinol 70:49–62

    Article  CAS  PubMed  Google Scholar 

  50. Brooks AI, Standifer KM, Cheng J et al (1994) Opioid binding in giant toad and goldfish brain. Receptor 4:55–62

    CAS  PubMed  Google Scholar 

  51. Gonzalez-Nunez V, Barrallo A, Traynor JR et al (2006) Characterization of opioid-binding sites in zebrafish brain. J Pharmacol Exp Ther 316:900–904

    Article  CAS  PubMed  Google Scholar 

  52. Bakalkin G, Pivovarov AS, Kobylyansky AG et al (1989) Lateralization of opioid receptors in turtle visual cortex. Brain Res 480:268–276

    Article  PubMed  Google Scholar 

  53. Pert CB, Aposhian D, Snyder SH (1974) Phylogenetic distribution of opiate receptor binding. Brain Res 75:356–361

    Article  CAS  PubMed  Google Scholar 

  54. Xia Y, Haddad GG (2001) Major difference in the expression of delta- and mu-opioid receptors between turtle and rat brain. J Comp Neurol 436:202–210

    Article  CAS  PubMed  Google Scholar 

  55. Csillag A, Stewart MG, Szekely AD et al (1993) Quantitative autoradiographic demonstration of changes in binding to delta opioid, but not mu or kappa receptors, in chick forebrain 30 minutes after passive avoidance training. Brain Res 613:96–105

    Article  CAS  PubMed  Google Scholar 

  56. Kawashima M, Imai S, Takahashi T et al (1995) An opiate receptor in the neurohypophysis of laying hens. Poult Sci 74:716–722

    Article  CAS  PubMed  Google Scholar 

  57. Martin R, McGregor GP, Halbinger G et al (1992) Methionine5-enkephalin and opiate binding sites in the neurohypophysis of the bird, Gallus domesticus. Regul Pept 38:33–44

    Article  CAS  PubMed  Google Scholar 

  58. Csillag A, Bourne RC, Stewart MG (1990) Distribution of mu, delta, and kappa opioid receptor binding sites in the brain of the one-day-old domestic chick (Gallus domesticus): an in vitro quantitative autoradiographic study. J Comp Neurol 302:543–551

    Article  CAS  PubMed  Google Scholar 

  59. Benyhe S, Varga E, Hepp J et al (1990) Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation. Neurochem Res 15:899–904

    Article  CAS  PubMed  Google Scholar 

  60. Mollereau C, Pascaud A, Baillat G et al (1988) Evidence for a new type of opioid binding site in the brain of the frog Rana ridibunda. Eur J Pharmacol 150:75–84

    Article  CAS  PubMed  Google Scholar 

  61. Newman LC, Wallace DR, Stevens CW (1999) Characterization of [3H]-diprenorphine binding in Rana pipiens: observations of filter binding enhanced by naltrexone. J Pharmacol Toxicol Methods 41:43–48

    Article  CAS  PubMed  Google Scholar 

  62. Newman LC, Wallace DR, Stevens CW (2000) Selective opioid receptor agonist and antagonist displacement of [3H]naloxone binding in amphibian brain. Eur J Pharmacol 397:255–262

    Article  CAS  PubMed  Google Scholar 

  63. Newman LC, Wallace DR, Stevens CW (2000) Selective opioid agonist and antagonist competition for [3H]-naloxone binding in amphibian spinal cord. Brain Res 884:184–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Newman LC, Sands SS, Wallace DR et al (2002) Characterization of mu, kappa, and delta opioid binding in amphibian whole brain tissue homogenates. J Pharmacol Exp Ther 301:364–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Stevens CW, Martin KK, Stahlheber BW (2009) Nociceptin produces antinociception after spinal administration in amphibians. Pharmacol Biochem Behav 91:436–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Li X, Keith DE, Evans CJ (1996) Mu opioid receptor-like sequences are present throughout vertebrate evolution. J Mol Evol 43:179–184

    Article  CAS  PubMed  Google Scholar 

  67. Darlison MG, Greten FR, Harvey RJ et al (1997) Opioid receptors from a lower vertebrate (Catostomus commersonii): sequence, pharmacology, coupling to a G-protein-gated inward-rectifying potassium channel (GIRK1), and evolution. Proc Natl Acad Sci U S A 94:8214–8219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Alvarez FA, Rodriguez-Martin I, Gonzalez-Nunez V et al (2006) New kappa opioid receptor from zebrafish Danio rerio. Neurosci Lett 405:94–99

    Article  CAS  PubMed  Google Scholar 

  69. Barrallo A, Gonzalez-Sarmiento R, Alvar F et al (2000) ZFOR2, a new opioid receptor-like gene from the teleost zebrafish (Danio rerio). Brain Res Mol Brain Res 84:1–6

    Article  CAS  PubMed  Google Scholar 

  70. Barrallo A, Gonzalez-Sarmiento R, Porteros A et al (1998) Cloning, molecular characterization, and distribution of a gene homologous to delta opioid receptor from zebrafish (Danio rerio). Biochem Biophys Res Commun 245:544–548

    Article  CAS  PubMed  Google Scholar 

  71. Rodriguez RE, Barrallo A, Garcia-Malvar F et al (2000) Characterization of ZFOR1, a putative delta-opioid receptor from the teleost zebrafish (Danio rerio). Neurosci Lett 288:207–210

    Article  CAS  PubMed  Google Scholar 

  72. Bradford CS, Walthers EA, Searcy BT et al (2005) Cloning, heterologous expression and pharmacological characterization of a kappa opioid receptor from the brain of the rough-skinned newt, Taricha granulosa. J Mol Endocrinol 34:809–823

    Article  CAS  PubMed  Google Scholar 

  73. Bradford CS, Walthers EA, Stanley DJ et al (2006) Delta and mu opioid receptors from the brain of a urodele amphibian, the rough-skinned newt Taricha granulosa: cloning, heterologous expression, and pharmacological characterization. Gen Comp Endocrinol 146:275–290

    Article  CAS  PubMed  Google Scholar 

  74. Walthers EA, Bradford CS, Moore FL (2005) Cloning, pharmacological characterization and tissue distribution of an ORL1 opioid receptor from an amphibian, the rough-skinned newt Taricha granulosa. J Mol Endocrinol 34:247–256

    Article  CAS  PubMed  Google Scholar 

  75. Stevens CW, Brasel CM, Mohan S (2007) Cloning and bioinformatics of amphibian mu, delta, kappa, and nociceptin opioid receptors expressed in brain tissue: evidence for opioid receptor divergence in mammals. Neurosci Lett 419:189–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Dorus S, Vallender EJ, Evans PD et al (2004) Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119:1027–1040

    Article  CAS  PubMed  Google Scholar 

  77. Brasel CM, Sawyer GW, Stevens CW (2008) A pharmacological comparison of the cloned frog and human mu opioid receptors reveals differences in opioid affinity and function. Eur J Pharmacol 599:36–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Butour JL, Moisand C, Mazarguil H et al (1997) Recognition and activation of the opioid receptor-like ORL 1 receptor by nociceptin, nociceptin analogs and opioids. Eur J Pharmacol 321:97–103

    Article  CAS  PubMed  Google Scholar 

  79. Rivas-Boyero AA, Herrero-Turrion MJ, Gonzalez-Nunez V et al (2011) Pharmacological characterization of a nociceptin receptor from zebrafish (Danio rerio). J Mol Endocrinol 46:111–123

    CAS  PubMed  Google Scholar 

  80. Tatusova TA, Madden TL (1999) BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  CAS  PubMed  Google Scholar 

  81. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  82. Zhang J, Nei M (1997) Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J Mol Evol 44:S139–S146

    Article  CAS  PubMed  Google Scholar 

  83. Iwama H, Gojobori T (2002) Identification of neurotransmitter receptor genes under significantly relaxed selective constraint by orthologous gene comparisons between humans and rodents. Mol Biol Evol 19:1891–1901

    Article  CAS  PubMed  Google Scholar 

  84. Josefsson LG (1999) Evidence for kinship between diverse G-protein coupled receptors. Gene 239:333–340

    Article  CAS  PubMed  Google Scholar 

  85. Madsen O, Willemsen D, Ursing BM et al (2002) Molecular evolution of the mammalian alpha 2B adrenergic receptor. Mol Biol Evol 19:2150–2160

    Article  CAS  PubMed  Google Scholar 

  86. Filipek S, Teller DC, Palczewski K et al (2003) The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu Rev Biophys Biomol Struct 32:375–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24:596–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Allen JA, Yost JM, Setola V et al (2011) Discovery of beta-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc Natl Acad Sci U S A 108:18488–18493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Institutes of Health, NIDA, through BLR research grants NIDA RO1DA017204 and the NIMH PDSP.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vardy, E., Stevens, C.W., Roth, B.L. (2014). Functional Evolution of Opioid Family G Protein-Coupled Receptors. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics