Skip to main content

Novel Mechanisms of G Protein-Coupled Receptor Oligomer and Ion Channel Interactions in Nociception

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors that are involved in regulating several physiological and behavioral responses in organisms. Indeed, over half of all the approved drugs on the market target GPCRs. Over the past 20 years, several lines of evidence have suggested that GPCRs associate to form oligomeric structures that substantially expand the complexity of signaling processes in vivo. In addition, GPCRs have also been shown to functionally regulate ion channels and help fine-tune neurotransmission. In this review, we will discuss recent advances in both mechanisms, with specific focus on opioid receptors, cannabinoid receptors, and transient receptor potential (TRP) calcium channels in nociception. A better understanding of such mechanisms will be imperative in designing analgesics devoid of deleterious side effects and mitigating drug abuse.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sharman JL, Mpamhanga CP, Spedding M et al (2011) IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Res 39:D534–D538

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bjarnadottir TK, Gloriam DE, Hellstrand SH et al (2006) Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88:263–273

    CAS  PubMed  Google Scholar 

  3. Whorton MR, Bokoch MP, Rasmussen SG et al (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Whorton MR, Jastrzebska B, Park PS et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10:819–830

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Fries DS (1995) Opioid analgesics. In: Foye WO, Lemke TL, Williams DA (eds) Principles of medicinal chemistry. William & Wilkins, Baltimore

    Google Scholar 

  7. Gutstein H, Akil H (2006) Opioid analgesics. In: Goodman LS, Gilman A (eds) Goodman and Gilman’s pharmacological basis of therapeutics. McGraw Hill, New York

    Google Scholar 

  8. De Petrocellis L, Di Marzo V (2009) An introduction to the endocannabinoid system: from the early to the latest concepts. Best Pract Res Clin Endocrinol Metab 23:1–15

    PubMed  Google Scholar 

  9. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    CAS  PubMed  Google Scholar 

  10. Matsuda LA, Lolait SJ, Brownstein MJ et al (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CAS  PubMed  Google Scholar 

  11. Kieffer BL, Befort K, Gaveriaux-Ruff C et al (1992) The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89:12048–12052

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Evans CJ, Keith DE Jr, Morrison H et al (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    CAS  PubMed  Google Scholar 

  13. Meng F, Xie GX, Thompson RC et al (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci U S A 90:9954–9958

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Thompson RC, Mansour A, Akil H et al (1993) Cloning and pharmacological characterization of a rat mu opioid receptor. Neuron 11:903–913

    CAS  PubMed  Google Scholar 

  15. Wang JB, Imai Y, Eppler CM et al (1993) mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci U S A 90:10230–10234

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Milligan G (2008) A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Br J Pharmacol 153:S216–S229

    CAS  PubMed  Google Scholar 

  17. Ferre S, Baler R, Bouvier M et al (2009) Building a new conceptual framework for receptor heteromers. Nat Chem Biol 5:131–134

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    CAS  PubMed Central  PubMed  Google Scholar 

  19. George SR, Fan T, Xie Z et al (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135

    CAS  PubMed  Google Scholar 

  20. Gomes I, Jordan BA, Gupta A et al (2000) Heterodimerization of mu and delta opioid receptors: a role in opiate synergy. J Neurosci 20:RC110

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang D, Sun X, Bohn LM et al (2005) Opioid receptor homo- and heterodimerization in living cells by quantitative bioluminescence resonance energy transfer. Mol Pharmacol 67:2173–2184

    CAS  PubMed  Google Scholar 

  22. Rios C, Gomes I, Devi LA (2006) mu opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    CAS  PubMed  Google Scholar 

  23. Hojo M, Sudo Y, Ando Y et al (2008) mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharmacol Sci 108:308–319

    Google Scholar 

  24. Mas-Nieto M, Pommier B, Tzavara ET et al (2001) Reduction of opioid dependence by the CB(1) antagonist SR141716A in mice: evaluation of the interest in pharmacotherapy of opioid addiction. Br J Pharmacol 132:1809–1816

    CAS  PubMed  Google Scholar 

  25. Chen Y, Geis C, Sommer C (2008) Activation of TRPV1 contributes to morphine tolerance: involvement of the mitogen-activated protein kinase signaling pathway. J Neurosci 28:5836–5845

    CAS  PubMed  Google Scholar 

  26. Daniels DJ, Lenard NR, Etienne CL et al (2005) Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc Natl Acad Sci U S A 102:19208–19213

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lenard NR, Daniels DJ, Portoghese PS et al (2007) Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Eur J Pharmacol 566:75–82

    CAS  PubMed  Google Scholar 

  28. Yekkirala AS, Lunzer MM, McCurdy CR et al (2011) N-naphthoyl-beta-naltrexamine (NNTA), a highly selective and potent activator of mu/kappa-opioid heteromers. Proc Natl Acad Sci U S A 108:5098–5103

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Khelashvili G, Dorff K, Shan J et al (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26:1804–1805

    CAS  PubMed  Google Scholar 

  30. Bulenger S, Marullo S, Bouvier M (2005) Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26:131–137

    CAS  PubMed  Google Scholar 

  31. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic (3H)etorphine to rat-brain homogenate. Proc Natl Acad Sci U S A 70:1947–1949

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Terenius L (1973) Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol Toxicol (Copenh) 32:317–320

    CAS  Google Scholar 

  33. Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science (New York, N.Y.) 182:1359–1361

    Google Scholar 

  34. Erez M, Takemori AE, Portoghese PS (1982) Narcotic antagonistic potency of bivalent ligands which contain beta-naltrexamine. Evidence for bridging between proximal recognition sites. J Med Chem 25:847–849

    CAS  PubMed  Google Scholar 

  35. Portoghese PS, Takemori AE (1985) TENA, a selective kappa opioid receptor antagonist. Life Sci 36:801–805

    CAS  PubMed  Google Scholar 

  36. Takemori AE, Portoghese PS (1992) Selective naltrexone-derived opioid receptor antagonists. Ann Rev Pharmacol Toxicol 32:239–269

    CAS  Google Scholar 

  37. Rothman RB, Westfall TC (1982) Morphine allosterically modulates the binding of [3H]leucine enkephalin to a particulate fraction of rat brain. Mol Pharmacol 21:538–547

    CAS  PubMed  Google Scholar 

  38. Rothman RB, Danks JA, Jacobson AE et al (1985) Leucine enkephalin noncompetitively inhibits the binding of [3H]naloxone to the opiate mu-recognition site: evidence for delta-mu binding site interactions in vitro. Neuropeptides 6:351–363

    CAS  PubMed  Google Scholar 

  39. Rothman RB, Westfall TC (1982) Allosteric coupling between morphine and enkephalin receptors in vitro. Mol Pharmacol 21:548–557

    CAS  PubMed  Google Scholar 

  40. Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128

    CAS  PubMed  Google Scholar 

  41. Fotiadis D, Liang Y, Filipek S et al (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Fotiadis D, Jastrzebska B, Philippsen A et al (2006) Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. Curr Opin Struct Biol 16:252–259

    CAS  PubMed  Google Scholar 

  43. Cvejic S, Devi LA (1997) Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 272:26959–26964

    CAS  PubMed  Google Scholar 

  44. Jordan BA, Cvejic S, Devi LA (2000) Opioids and their complicated receptor complexes. Neuropsychopharmacology 23:S5–S18

    CAS  PubMed  Google Scholar 

  45. Li-Wei C, Can G, De-He Z et al (2002) Homodimerization of human mu-opioid receptor overexpressed in Sf9 insect cells. Protein Pept Lett 9:145–152

    PubMed  Google Scholar 

  46. Hebert TE, Moffett S, Morello JP et al (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271:16384–16392

    CAS  PubMed  Google Scholar 

  47. Bai M, Trivedi S, Brown EM (1998) Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J Biol Chem 273:23605–23610

    CAS  PubMed  Google Scholar 

  48. Zeng FY, Wess J (1999) Identification and molecular characterization of M3 muscarinic receptor dimers. J Biol Chem 274:19487–19497

    CAS  PubMed  Google Scholar 

  49. Milligan G (2004) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci 21:397–405

    CAS  PubMed  Google Scholar 

  50. Milligan G (2004) G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66:1–7

    CAS  PubMed  Google Scholar 

  51. Pfeiffer M, Koch T, Schroder H et al (2002) Heterodimerization of somatostatin and opioid receptors cross-modulates phosphorylation, internalization, and desensitization. J Biol Chem 277:19762–19772

    CAS  PubMed  Google Scholar 

  52. Jordan BA, Gomes I, Rios C et al (2003) Functional interactions between mu opioid and alpha 2A-adrenergic receptors. Mol Pharmacol 64:1317–1324

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Chen C, Li J, Bot G et al (2004) Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. Eur J Pharmacol 483:175–186

    CAS  PubMed  Google Scholar 

  54. Zhang YQ, Limbird LE (2004) Hetero-oligomers of alpha2A-adrenergic and mu-opioid receptors do not lead to transactivation of G-proteins or altered endocytosis profiles. Biochem Soc Trans 32:856–860

    Google Scholar 

  55. Rios C, Gomes I, Devi LA (2004) Interactions between delta opioid receptors and alpha-adrenoceptors. Clin Exp Pharmacol Physiol 31:833–836

    CAS  PubMed  Google Scholar 

  56. Prinster SC, Hague C, Hall RA (2005) Heterodimerization of G protein-coupled receptors: specificity and functional significance. Eur J Pharmacol 57:289–298

    CAS  Google Scholar 

  57. Wang H-L, Hsu C-Y, Huang P-C et al (2005) Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of micro receptor agonist. J Neurochem 92:1285–1294

    CAS  PubMed  Google Scholar 

  58. Mackie K (2005) Cannabinoid receptor homo- and heterodimerization. Life Sci 77:1667–1673

    CAS  PubMed  Google Scholar 

  59. Schroder H, Wu DF, Seifert A et al (2009) Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the mu-opioid receptor. Neuropharmacology 56:768–778

    CAS  PubMed  Google Scholar 

  60. Terrillon S, Durroux T, Mouillac B et al (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17:677–691

    CAS  PubMed  Google Scholar 

  61. Salahpour A, Angers S, Mercier JF et al (2004) Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279:33390–33397

    CAS  PubMed  Google Scholar 

  62. Hasbi A, Nguyen T, Fan T et al (2007) Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry 46:12997–13009

    CAS  PubMed  Google Scholar 

  63. Vohra S, Chintapalli SV, Illingworth CJ et al (2007) Computational studies of Family A and Family B GPCRs. Biochem Soc Trans 35:749–754

    CAS  PubMed  Google Scholar 

  64. Mukhopadhyay S, McIntosh HH, Houston DB et al (2000) The CB (1) cannabinoid receptor juxtamembrane C-terminal peptide confers activation to specific G proteins in brain. Mol Pharmacol 57:162–170

    CAS  PubMed  Google Scholar 

  65. Hajos N, Katona I, Naiem SS et al (2000) Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur J Neurosci 12:3239–3249

    CAS  PubMed  Google Scholar 

  66. Katona I, Rancz EA, Acsady L et al (2001) Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. J Neurosci 21:9506–9518

    CAS  PubMed  Google Scholar 

  67. Wager-Miller J, Westenbroek R, Mackie K (2002) Dimerization of G protein-coupled receptors: CB1 cannabinoid receptors as an example. Chem Phys Lipids 121:83–89

    CAS  PubMed  Google Scholar 

  68. Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev 62:588–631

    CAS  PubMed  Google Scholar 

  69. Glass M, Felder CC (1997) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor. J Neurosci 17:5327–5333

    CAS  PubMed  Google Scholar 

  70. Kearn CS, Blake-Palmer K, Daniel E et al (2005) Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol Pharmacol 67:1697–1704

    CAS  PubMed  Google Scholar 

  71. Marcellino D, Carriba P, Filip M et al (2008) Antagonistic cannabinoid CB1/dopamine D2 receptor interactions in striatal CB1/D2 heteromers. A combined neurochemical and behavioral analysis. Neuropharmacology 54:815–823

    CAS  PubMed  Google Scholar 

  72. Andersson M, Usiello A, Borgkvist A et al (2005) Cannabinoid action depends on phosphorylation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa at the protein kinase A site in striatal projection neurons. J Neurosci 25:8432–8438

    CAS  PubMed  Google Scholar 

  73. Carriba P, Ortiz O, Patkar K et al (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    CAS  PubMed  Google Scholar 

  74. Ellis J, Pediani JD, Canals M et al (2006) Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 281:38812–38824

    CAS  PubMed  Google Scholar 

  75. Hilairet S, Bouaboula M, Carriere D et al (2003) Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J Biol Chem 278:23731–23737

    CAS  PubMed  Google Scholar 

  76. Manzanares J, Corchero J, Romero J et al (1999) Pharmacological and biochemical interactions between opioids and cannabinoids. Trends Pharmacol Sci 20:287–294

    CAS  PubMed  Google Scholar 

  77. Ledent C, Valverde O, Cossu G et al (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404

    CAS  PubMed  Google Scholar 

  78. Ghozland S, Matthes HW, Simonin F et al (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci 22:1146–1154

    CAS  PubMed  Google Scholar 

  79. Cichewicz DL, Welch SP (2003) Modulation of oral morphine antinociceptive tolerance and naloxone-precipitated withdrawal signs by oral Delta 9-tetrahydrocannabinol. J Pharmacol Exp Ther 305:812–817

    CAS  PubMed  Google Scholar 

  80. Rodriguez JJ, Mackie K, Pickel VM (2001) Ultrastructural localization of the CB1 cannabinoid receptor in mu-opioid receptor patches of the rat Caudate putamen nucleus. J Neurosci 21:823–833

    CAS  PubMed  Google Scholar 

  81. Pickel VM, Chan J, Kash TL et al (2004) Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience 127:101–112

    CAS  PubMed  Google Scholar 

  82. Salio C, Fischer J, Franzoni MF et al (2001) CB1-cannabinoid and mu-opioid receptor co-localization on postsynaptic target in the rat dorsal horn. Neuroreport 12:3689–3692

    CAS  PubMed  Google Scholar 

  83. Scavone JL, Mackie K, Van Bockstaele EJ (2010) Characterization of cannabinoid-1 receptors in the locus coeruleus: relationship with mu-opioid receptors. Brain Res 1312:18–31

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Zheng Y, Akgun E, Harikumar KG et al (2009) Induced association of mu opioid (MOP) and type 2 cholecystokinin (CCK2) receptors by novel bivalent ligands. J Med Chem 52:247–258

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Milligan G, Bouvier M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925

    CAS  PubMed  Google Scholar 

  86. Laroche G, Lepine MC, Theriault C et al (2005) Oligomerization of the alpha and beta isoforms of the thromboxane A2 receptor: relevance to receptor signaling and endocytosis. Cell Signal 17:1373–1383

    CAS  PubMed  Google Scholar 

  87. Jordan BA, Trapaidze N, Gomes I et al (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc Natl Acad Sci U S A 98:343–348

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cao TT, Brelot A, von Zastrow M (2005) The composition of the beta-2 adrenergic receptor oligomer affects its membrane trafficking after ligand-induced endocytosis. Mol Pharmacol 67:288–297

    CAS  PubMed  Google Scholar 

  89. Law PY, Erickson-Herbrandson LJ, Zha QQ et al (2005) Heterodimerization of mu- and delta-opioid receptors occurs at the cell surface only and requires receptor-G protein interactions. J Biol Chem 280:11152–11164

    CAS  PubMed  Google Scholar 

  90. He SQ, Zhang ZN, Guan JS et al (2011) Facilitation of mu-opioid receptor activity by preventing delta-opioid receptor-mediated codegradation. Neuron 69:120–131

    CAS  PubMed  Google Scholar 

  91. Yekkirala AS (2012) Two to tango: GPCR oligomers and GPCR-TRP channel interactions in nociception. Life Sci 92:438–445

    PubMed  Google Scholar 

  92. Abdelhamid EE, Sultana M, Portoghese PS et al (1991) Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther 258:299–303

    CAS  PubMed  Google Scholar 

  93. Sanchez-Blazquez P, Garcia-Espana A, Garzon J (1997) Antisense oligodeoxynucleotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2 opioid receptors. J Pharmacol Exp Ther 280:1423–1431

    CAS  PubMed  Google Scholar 

  94. Nitsche JF, Schuller AG, King MA et al (2002) Genetic dissociation of opiate tolerance and physical dependence in delta-opioid receptor-1 and preproenkephalin knock-out mice. J Neurosci 22:10906–10913

    CAS  PubMed  Google Scholar 

  95. Portoghese PS (2001) From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J Med Chem 44:2259–2269

    CAS  PubMed  Google Scholar 

  96. Costa T, Shimohigashi Y, Krumins SA et al (1982) Dimeric pentapeptide enkephalin: a novel probe of delta opiate receptors. Life Sci 31:1625–1632

    CAS  PubMed  Google Scholar 

  97. Shimohigashi Y, Costa T, Chen HC et al (1982) Dimeric tetrapeptide enkephalins display extraordinary selectivity for the delta opiate receptor. Nature 297:333–335

    CAS  PubMed  Google Scholar 

  98. Costa T, Wuster M, Herz A et al (1985) Receptor binding and biological activity of bivalent enkephalins. Biochem Pharmacol 34:25–30

    CAS  PubMed  Google Scholar 

  99. Sasaki-Yagi Y, Kimura S, Imanishi Y (1991) Binding to opioid receptors of enkephalin derivatives taking alpha-helical conformation and its dimer. Int J Pept Protein Res 38:378–384

    CAS  PubMed  Google Scholar 

  100. Portoghese PS, Ronsisvalle G, Larson DL et al (1982) Opioid agonist and antagonist bivalent ligands as receptor probes. Life Sci 31:1283–1286

    CAS  PubMed  Google Scholar 

  101. Bhushan RG, Sharma SK, Xie Z et al (2004) A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta 1 and kappa 2 phenotypes. Selective targeting of delta-kappa heterodimers. J Med Chem 47:2969–2972

    CAS  PubMed  Google Scholar 

  102. Daniels DJ, Kulkarni A, Xie Z et al (2005) A bivalent ligand (KDAN-18) containing delta-antagonist and kappa-agonist pharmacophores bridges delta2 and kappa1 opioid receptor phenotypes. J Med Chem 48:1713–1716

    Google Scholar 

  103. Hazum E, Chang KJ, Leighton HJ et al (1982) Increased biological activity of dimers of oxymorphone and enkephalin: possible role of receptor crosslinking. Biochem Biophys Res Commun 104:347–353

    CAS  PubMed  Google Scholar 

  104. Portoghese PS, Larson DL, Yim CB et al (1985) Stereostructure-activity relationship of opioid agonist and antagonist bivalent ligands. Evidence for bridging between vicinal opioid receptors. J Med Chem 28:1140–1141

    CAS  PubMed  Google Scholar 

  105. Yekkirala AS, Kalyuzhny AE, Portoghese PS (2010) Standard opioid agonists activate heteromeric opioid receptors: evidence for morphine and [D-Ala2-MePhe4-Glyol5]enkephalin as selective μ-∂ agonists. ACS Chem Neurosci 1:146–154

    CAS  PubMed  Google Scholar 

  106. Scherrer G, Imamachi N, Cao YQ et al (2009) Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137:1148–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Wang HB, Zhao B, Zhong YQ et al (2010) Coexpression of delta- and mu-opioid receptors in nociceptive sensory neurons. Proc Natl Acad Sci U S A 107:13117–13122

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Gupta A, Mulder J, Gomes I et al (2010) Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal 3:ra54

    PubMed Central  PubMed  Google Scholar 

  109. Waldhoer M, Fong J, Jones RM et al (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci U S A 102:9050–9055

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Wessendorf MW, Dooyema J (2001) Coexistence of kappa- and delta-opioid receptors in rat spinal cord axons. Neurosci Lett 298:151–154

    CAS  PubMed  Google Scholar 

  111. Cichewicz DL, Martin ZL, Smith FL et al (1999) Enhancement mu opioid antinociception by oral delta 9-tetrahydrocannabinol: dose–response analysis and receptor identification. J Pharmacol Exp Ther 289:859–867

    CAS  PubMed  Google Scholar 

  112. Reche I, Fuentes JA, Ruiz-Gayo M (1996) A role for central cannabinoid and opioid systems in peripheral delta 9-tetrahydrocannabinol-induced analgesia in mice. Eur J Pharmacol 301:75–81

    Google Scholar 

  113. Roberts JD, Gennings C, Shih M (2006) Synergistic affective analgesic interaction between delta 9-tetrahydrocannabinol and morphine. Eur J Pharmacol 530:54–58

    CAS  PubMed  Google Scholar 

  114. Castane A, Robledo P, Matifas A et al (2003) Cannabinoid withdrawal syndrome is reduced in double mu and delta opioid receptor knockout mice. Eur J Neurosci 17:155–159

    PubMed  Google Scholar 

  115. Szallasi A, Cortright DN, Blum CA et al (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    CAS  PubMed  Google Scholar 

  116. Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  117. Jordt SE, Bautista DM, Chuang HH et al (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    CAS  PubMed  Google Scholar 

  118. Bautista DM, Jordt SE, Nikai T et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  119. von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Google Scholar 

  120. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    CAS  PubMed  Google Scholar 

  121. Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16:1248–1257

    CAS  PubMed  Google Scholar 

  122. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    CAS  PubMed  Google Scholar 

  123. Negri L, Lattanzi R, Giannini E et al (2006) Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J Neurosci 26:6716–6727

    CAS  PubMed  Google Scholar 

  124. Moriyama T, Higashi T, Togashi K et al (2005) Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol Pain 1:3

    PubMed Central  PubMed  Google Scholar 

  125. Zhang H, Cang CL, Kawasaki Y et al (2007) Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. J Neurosci 27:12067–12077

    CAS  PubMed  Google Scholar 

  126. Kim YH, Park CK, Back SK et al (2009) Membrane-delimited coupling of TRPV1 and mGluR5 on presynaptic terminals of nociceptive neurons. J Neurosci 29:10000–10009

    CAS  PubMed  Google Scholar 

  127. Imamachi N, Park GH, Lee H et al (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A 106:11330–11335

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Wilson SR, Gerhold KA, Bifolck-Fisher A et al (2011) TRPA1 is required for histamine-independent, Mas-related G protein-coupled receptor-mediated itch. Nat Neurosci 14:595–602

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Zhang X, Mak S, Li L et al (2012) Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat Cell Biol 14:851–858

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Schmidtko A, Gao W, Konig P et al (2008) cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I. J Neurosci 28:8568–8576

    CAS  PubMed  Google Scholar 

  131. Heine S, Michalakis S, Kallenborn-Gerhardt W et al (2011) CNGA3: a target of spinal nitric oxide/cGMP signaling and modulator of inflammatory pain hypersensitivity. J Neurosci 31:11184–11192

    CAS  PubMed  Google Scholar 

  132. Zhang FX, Liu XJ, Gong LQ et al (2010) Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 30:10927–10938

    CAS  PubMed  Google Scholar 

  133. Loo L, Shepherd AJ, Mickle AD et al (2012) The C-type natriuretic peptide induces thermal hyperalgesia through a noncanonical Gβγ-dependent modulation of TRPV1 channel. J Neurosci 32:11942–11955

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Vetter I, Wyse BD, Monteith GR et al (2006) The mu opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol Pain 2:22

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Drs. Philip Portoghese and Sonia Das and Mr. Jared Sprague for their constructive comments. The expert assistance of Mr. David Roberson in designing figures is also most appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yekkirala, A.S. (2014). Novel Mechanisms of G Protein-Coupled Receptor Oligomer and Ion Channel Interactions in Nociception. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics