Skip to main content

Gene Therapy Using G Protein-Coupled Receptors for the Treatment of Cardiovascular Disease

  • Protocol
  • First Online:
G Protein-Coupled Receptor Genetics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Cardiovascular diseases are the most common cause of death worldwide, and despite advances in treatments, mortality rates still remain elevated. Heart failure prevalence is increasing and accounts for half a million deaths per year in the USA. Thus, there is an urgent need to develop new therapeutic strategies for heart failure patients, and gene therapy certainly is a promising one. Currently, clinical trials using virus-mediated gene transfer of molecular targets involved in heart failure pathophysiology are in progress. G protein-coupled receptors and the GPCR-related signaling molecules have proven to be a valuable potential target in heart failure therapy, as demonstrated by preclinical studies in animal models of the disease. The improvement in vector-related techniques and the development of new targets will lead in the next years to effective gene therapy clinical trials for heart failure patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levy D, Kenchaiah S, Larson MG et al (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402

    Article  PubMed  Google Scholar 

  2. Roger VL, Weston SA, Redfield MM et al (2004) Trends in heart failure incidence and survival in a community-based population. JAMA 292:344–350

    Article  CAS  PubMed  Google Scholar 

  3. Bradshaw AC, Baker AH (2013) Gene therapy for cardiovascular disease: perspectives and potential. Vascul Pharmacol 58:174–181

    Article  CAS  PubMed  Google Scholar 

  4. Tilemann L, Ishikawa K, Weber T et al (2012) Gene therapy for heart failure. Circ Res 110:777–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jessup M, Greenberg B, Mancini D et al (2011) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313

    Article  CAS  PubMed  Google Scholar 

  6. Phase I/II Study AC6 gene transfer for congestive heart failure (ClinicalTrials.gov, NCT00787059)

    Google Scholar 

  7. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    Article  CAS  PubMed  Google Scholar 

  8. Lymperopoulos A, Rengo G, Funakoshi H et al (2007) Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat Med 13:315–323

    Article  CAS  PubMed  Google Scholar 

  9. Communal C, Singh K, Sawyer DB et al (1999) Opposing effects of β1- and β2- adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin sensitive G protein. Circulation 100:2210–2212

    Article  CAS  PubMed  Google Scholar 

  10. Zhu WZ, Zheng M, Koch WJ et al (2001) Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiomyocytes. Proc Natl Acad Sci U S A 98:1607–1612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lymperopoulos A, Rengo G, Koch WJ (2007) Adrenal adrenoceptors in heart failure: fine tuning cardiac stimulation. Trends Mol Med 13:503–511

    Article  CAS  PubMed  Google Scholar 

  12. Petrofski JP, Koch WJ (2003) The β-adrenergic receptor kinase (βARK1) in heart failure. J Mol Cell Cardiol 35:1167–1174

    Article  CAS  PubMed  Google Scholar 

  13. Bristow MR, Ginsburg R, Umans V et al (1986) β1- and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 59:297–309

    Article  CAS  PubMed  Google Scholar 

  14. Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233

    Article  CAS  PubMed  Google Scholar 

  15. Badenhorst D, Veliotes D, Maseko M et al (2003) Beta-adrenergic activation initiates chamber dilatation in concentric hypertrophy. Hypertension 41:499–504

    Article  CAS  PubMed  Google Scholar 

  16. Engelhardt S, Hein L, Dyachenkow V et al (2004) Altered calcium handling is critically involved in the cardiotoxic effects of chronic beta-adrenergic stimulation. Circulation 109:1154–1160

    Article  CAS  PubMed  Google Scholar 

  17. Milano CA, Allen LF, Rockman HA et al (1994) Enhanced myocardial function in transgenic mice overexpressing the beta 2 adrenergic receptor. Science 264:582–586

    Article  CAS  PubMed  Google Scholar 

  18. Maurice JP, Hata JA, Shah AS et al (1999) Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 104:21–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Shah AS, Lilly RE, Kypson AP et al (2000) Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101:408–414

    Article  CAS  PubMed  Google Scholar 

  20. Rengo G, Zincarelli C, Femminella GD et al (2012) Myocardial β(2) -adrenoceptor gene delivery promotes coordinated cardiac adaptive remodelling and angiogenesis in heart failure. Br J Pharmacol 166:2348–2361

    Article  CAS  PubMed  Google Scholar 

  21. Kaye DM, Lefkovits J, Jennings G (1995) Adverse consequences of increased cardiac sympathetic activity in the failing human heart. J Am Coll Cardiol 26:1257–1263

    Article  CAS  PubMed  Google Scholar 

  22. Iaccarino G, Tomhave ED, Lefkowitz RJ et al (1998) Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. Circulation 98:1783–1789

    Article  CAS  PubMed  Google Scholar 

  23. Koch WJ, Rockman HA, Samama P et al (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 268:1350–1353

    Article  CAS  PubMed  Google Scholar 

  24. Jaber M, Koch WJ, Rockman H et al (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci U S A 93:12974–12979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Akhter SA, Eckhart AD, Rockman HA et al (1999) In vivo inhibition of elevated myocardial beta-adrenergic receptor kinase activity in hybrid transgenic mice restores normal beta-adrenergic signaling and function. Circulation 100:648–653

    Article  CAS  PubMed  Google Scholar 

  26. Raake PW, Vinge LE, Gao E et al (2008) G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 103:413–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Rockman HA, Chien KR, Choi DJ et al (1998) Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A 95:7000–7005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Harding VB, Jones LR, Lefkowitz RJ et al (2001) Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci U S A 98:5809–5814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rockman HA, Choi DJ, Akhter SA et al (1998) Control of myocardial contractile function by the level of β-adrenergic receptor kinase 1 in gene-targeted mice. J Biol Chem 273:18180–18184

    Article  CAS  PubMed  Google Scholar 

  30. Akhter SA, Skaer CA, Kypson AP et al (1997) Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc Natl Acad Sci U S A 94:12100–12105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Williams ML, Hata JA, Schroder J et al (2004) Targeted beta-adrenergic receptor kinase (betaARK1) inhibition by gene transfer in failing human hearts. Circulation 109:1590–1593

    Article  CAS  PubMed  Google Scholar 

  32. White DC, Hata JA, Shah AS et al (2000) Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci U S A 97:5428–5433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Shah AS, White DC, Emani S et al (2001) In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103:1311–1316

    Article  CAS  PubMed  Google Scholar 

  34. Emani SM, Shah AS, White DC et al (2001) Right ventricular gene therapy with a beta-adrenergic receptor kinase inhibitor improves survival after pulmonary artery banding. Ann Thorac Surg 72:1657–1661

    Article  CAS  PubMed  Google Scholar 

  35. Tevaearai HT, Eckhart AD, Shotwell KF et al (2001) Ventricular dysfunction after cardioplegic arrest is improved after myocardial gene transfer of a beta-adrenergic receptor kinase inhibitor. Circulation 104:2069–2074

    Article  CAS  PubMed  Google Scholar 

  36. Zincarelli C, Soltys S, Rengo G et al (2008) Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080

    Article  CAS  PubMed  Google Scholar 

  37. Zincarelli C, Soltys S, Rengo G et al (2010) Comparative cardiac gene delivery of adeno-associated virus serotypes 1–9 reveals that AAV6 mediates the most efficient transduction in mouse heart. Clin Transl Sci 3:81–89

    Article  CAS  PubMed  Google Scholar 

  38. Rengo G, Lymperopoulos A, Zincarelli C et al (2009) Myocardial adeno-associated virus serotype 6-βARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119:89–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Raake PW, Schlegel P, Ksienzyk J et al (2013) AAV6.βARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 34:1437–1447

    Article  CAS  PubMed  Google Scholar 

  40. Rengo G, Perrone-Filardi P, Femminella GD et al (2012) Targeting the β-adrenergic receptor system through G-protein-coupled receptor kinase 2: a new paradigm for therapy and prognostic evaluation in heart failure: from bench to bedside. Circ Heart Fail 5:385–391

    Article  CAS  PubMed  Google Scholar 

  41. Lymperopoulos A, Rengo G, Zincarelli C et al (2008) Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity. Mol Ther 16:302–307

    Article  CAS  PubMed  Google Scholar 

  42. Lymperopoulos A, Rengo G, Gao E et al (2010) Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285:16378–16386

    Article  CAS  PubMed  Google Scholar 

  43. Yang ZJ, Zhang YR, Chen B et al (2009) Phase I clinical trial on intracoronary administration of Ad-hHGF treating severe coronary artery disease. Mol Biol Rep 36:1323–1329

    Article  CAS  PubMed  Google Scholar 

  44. Grines CL, Watkins MW, Mahmarian JJ et al (2003) A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 42:1339–1347

    Article  CAS  PubMed  Google Scholar 

  45. Wasala NB, Shin JH, Duan D (2011) The evolution of heart gene delivery vectors. J Gene Med 13:557–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Wright MJ, Wightman LM, Lilley C et al (2001) In vivo myocardial gene transfer: optimization, evaluation and direct comparison of gene transfer vectors. Basic Res Cardiol 96:227–236

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Nunes FA, Berencsi K et al (1994) Cellular immunity to viral antigens limits E1-deleted adenovirus for gene therapy. Proc Natl Acad Sci U S A 91:4407–4411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yla-Herttuala S, Alitalo K (2003) Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 9:694–701

    Article  PubMed  Google Scholar 

  49. Stratford-Perricaudet LD, Makeh I, Perricaudet M et al (1992) Widespread, long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 90:626–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Schiedner G, Hertel S, Johnston M et al (2002) Variables affecting in vivo performance of high-capacity adenovirus vectors. J Virol 76:1600–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kotin RM, Siniscalco M, Samulski RJ et al (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87:2211–2215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ishikawa K, Tilemann L, Fish K et al (2011) Gene delivery methods in cardiac gene therapy. J Gene Med 13:566–572

    Article  CAS  PubMed  Google Scholar 

  53. Bish LT, Sleeper MM, Brainard B et al (2008) Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 16:1953–1959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Schneider C, Jaquet K, Malisius R et al (2007) Attenuation of cardiac remodelling by endocardial injection of erythropoietin: ultrasonic strain-rate imaging in a model of hibernating myocardium. Eur Heart J 28:499–509

    Article  PubMed  Google Scholar 

  55. Lau DH, Clausen C, Sosunov EA et al (2009) Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation 119:19–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Lamping KG, Rios CD, Chun JA et al (1997) Intrapericardial administration of adenovirus for gene transfer. Am J Physiol 272:H310–H317

    CAS  PubMed  Google Scholar 

  57. Fromes Y, Salmon A, Wang X et al (1999) Gene delivery to the myocardium by intrapericardial injection. Gene Ther 6:683–688

    Article  CAS  PubMed  Google Scholar 

  58. Tang T, Gao MH, Hammond HK (2012) Prospects for gene transfer for clinical heart failure. Gene Ther 19:606–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Leosco, D., Femminella, G.D., de Lucia, C., Rengo, G. (2014). Gene Therapy Using G Protein-Coupled Receptors for the Treatment of Cardiovascular Disease. In: Stevens, C. (eds) G Protein-Coupled Receptor Genetics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-779-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-779-2_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-778-5

  • Online ISBN: 978-1-62703-779-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics