Skip to main content

3D Chemical Mapping: Application of Scanning Transmission (Soft) X-ray Microscopy (STXM) in Combination with Angle-Scan Tomography in Bio-, Geo-, and Environmental Sciences

  • Protocol
  • First Online:
Electron Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100–2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirz J, Rarback H (1985) Soft-X-ray microscopes. Rev Sci Instrum 56:1–13

    Article  Google Scholar 

  2. Kilcoyne ALD, Tyliszczak T, Steele WF et al (2003) Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. J Synchrotron Radiat 10:125–136

    Article  CAS  PubMed  Google Scholar 

  3. Wiesemann U, Thieme J, Guttmann P et al (2003) First results of the new scanning transmission X-ray microscope at BESSY-II. J Phys IV 104:95–98

    Google Scholar 

  4. Kaznatcheev KV, Karunakaran C, Lanke UD et al (2007) Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Instrum Methods A Phys Res Sect A 582:96–99

    Article  CAS  Google Scholar 

  5. Kaulich B, Bacescu D, Susini J et al (2006) TwinMic—a European twin X-ray microscopy station commissioned at ELETTRA. In: Aoki S, Kagoshima Y, Suzuki Y (eds) IPAP Conference Series 7. Himeji, Japan, pp 22–25

    Google Scholar 

  6. Xue CF, Wang Y, Guo Z et al (2010) High-performance soft x-ray spectromicroscopy beamline at SSRF. Rev Sci Instrum 81:103502. doi:10.1063/1.3491837

    Article  PubMed  Google Scholar 

  7. Raabe J, Tzvetkov G, Flechsig U et al (2008) PolLux: a new facility for soft X-ray spectromicroscopy at the Swiss Light Source. Rev Sci Instrum 79:113704. doi:10.1063/1.3021472

    Article  CAS  PubMed  Google Scholar 

  8. Hitchcock AP (2012) Soft X-ray imaging and spectromicroscopy. In: van Tendeloo G, van Dyck D, Pennycook SJ (eds) Handbook of nanoscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 745–791

    Google Scholar 

  9. Willmott P (2011) Synchrotron physics. In: Willmott P (ed) An Introduction to synchrotron radiation. John Wiley & Sons Ltd, Chichester, pp 39–86

    Chapter  Google Scholar 

  10. Bluhm H, Andersson K, Araki T et al (2006) Soft x-ray microscopy and spectroscopy at the molecular environmental science beamline at the advanced light source. J Electron Spectrosc 150:86–104

    Article  CAS  Google Scholar 

  11. Lawrence JR, Hitchcock AP (2011) Synchrotron-based X-Ray and FTIR absorption spectromicroscopies of organic contaminants in the environment. In: Xing B, Senesi N, Huang PM (eds) Biophysico-chemical processes of anthropogenic organic compounds in environmental systems. Wiley, Hoboken, pp 341–368

    Chapter  Google Scholar 

  12. Behrens S, Kappler A, Obst M (2012) Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ Microbiol 14:2851–2869

    Article  CAS  PubMed  Google Scholar 

  13. Jacobsen C, Wirick S, Flynn G et al (2000) Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J Microsc (Oxford) 197:173–184

    Article  CAS  Google Scholar 

  14. Henke BL, Gullikson EM, Davis JC (1993) X-Ray interactions—photoabsorption, scattering, transmission, and reflection at E = 50–30,000 Ev, Z = 1–92. Atom Data Nucl Data Tables 54:181–342

    Article  CAS  Google Scholar 

  15. Thompson AC, Attwood D, Gullikson E et al (2009) X-ray properties of the elements. In: Thompson AC (ed) X-ray data booklet, 3rd edn. Lawrence Berkeley National Laboratory, Berkeley, pp 1–53

    Google Scholar 

  16. Willmott P (2011) Spectroscopic techniques. In: Willmott P (ed) An introduction to synchrotron radiation. John Wiley & Sons Ltd, Chichester, pp 223–302

    Chapter  Google Scholar 

  17. Lawrence JR, Swerhone GDW, Leppard GG et al (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl Environ Microbiol 69:5543–5554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dynes JJ, Tyliszczak T, Araki T et al (2006) Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 40:1556–1565

    Article  CAS  PubMed  Google Scholar 

  19. Hitchcock AP, Dynes JJ, Lawrence JR et al (2009) Soft X-ray spectromicroscopy of nickel sorption in a natural river biofilm. Geobiology 7:432–453

    Article  CAS  PubMed  Google Scholar 

  20. Lawrence JR, Dynes JJ, Korber DR et al (2012) Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chem Geol 329:18–25

    Article  CAS  Google Scholar 

  21. Hunter RC, Hitchcock AP, Dynes JJ et al (2008) Mapping the speciation of iron in Pseudomonas aeruginosa biofilms using scanning transmission X-ray microscopy. Environ Sci Technol 42:8766–8772

    Article  CAS  PubMed  Google Scholar 

  22. Miot J, Benzerara K, Morin G et al (2009) Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73:696–711

    Article  CAS  Google Scholar 

  23. Miot J, Maclellan K, Benzerara K et al (2011) Preservation of protein globules and peptidoglycan in the mineralized cell wall of nitrate-reducing, iron(II)-oxidizing bacteria: a cryo-electron microscopy study. Geobiology 9:459–470

    Article  CAS  PubMed  Google Scholar 

  24. Pantke C, Obst M, Benzerara K et al (2012) Green rust formation during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1. Environ Sci Technol 46:1439–1446

    Google Scholar 

  25. Hitchcock AP, Obst M, Wang J et al (2012) Advances in the detection of As in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria. Environ Sci Technol 46:2821–2829

    Article  CAS  PubMed  Google Scholar 

  26. Miot J, Benzerara K, Obst M et al (2009) Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol 75:5586–5591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chan CS, De Stasio G, Welch SA et al (2004) Microbial polysaccharides template assembly of nanocrystal fibers. Science 303:1656–1658

    Article  CAS  PubMed  Google Scholar 

  28. Chan CS, Fakra SC, Edwards DC (2009) Iron oxyhydroxide mineralization on microbial extracellular polysaccharides. Geochim Cosmochim Acta 73:3807–3818

    Article  CAS  Google Scholar 

  29. Chan CS, Fakra SC, Emerson D et al (2011) Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J 5:717–727

    Article  CAS  PubMed  Google Scholar 

  30. Coker VS, Byrne JM, Telling ND et al (2012) Characterisation of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD. Geobiology 10:347–354

    Article  CAS  PubMed  Google Scholar 

  31. Lam KP, Hitchcock AP, Obst M et al (2010) Characterizing magnetism of individual magnetosomes by X-ray magnetic circular dichroism in a scanning transmission X-ray microscope. Chem Geol 270:110–116

    Article  CAS  Google Scholar 

  32. Pecher K, McCubbery D, Kneedler E et al (2003) Quantitative charge state analysis of manganese biominerals in aqueous suspension using scanning transmission X-ray microscopy (STXM). Geochim Cosmochim Acta 67: 1089–1098

    Article  CAS  Google Scholar 

  33. Toner B, Fakra S, Villalobos M et al (2005) Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl Environ Microbiol 71:1300–1310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Benzerara K, Yoon TH, Tyliszczak T et al (2004) Scanning transmission X-ray microscopy study of microbial calcification. Geobiology 2:249–259

    Article  Google Scholar 

  35. Obst M, Dynes JJ, Lawrence JR et al (2009) Precipitation of amorphous CaCO(3) (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochim Cosmochim Acta 73: 4180–4198

    Article  CAS  Google Scholar 

  36. Norlund KLI, Southam G, Tyliszczak T et al (2009) Microbial architecture of environmental sulfur processes: a novel syntrophic sulfur-metabolizing consortia. Environ Sci Technol 43:8781–8786

    Article  CAS  PubMed  Google Scholar 

  37. Johansson GA, Tyliszczak T, Mitchell GE et al (2007) Three-dimensional chemical mapping by scanning transmission X-ray spectromicroscopy. J Synchrotron Radiat 14:395–402

    Article  CAS  PubMed  Google Scholar 

  38. Obst M, Wang J, Hitchcock AP (2009) Soft X-ray spectro-tomography study of cyanobacterial biomineral nucleation. Geobiology 7:577–591

    Article  CAS  PubMed  Google Scholar 

  39. Herman GT, Lent A, Rowland SW (1973) ART: mathematics and applications: a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J Theor Biol 42:1–32

    Article  CAS  PubMed  Google Scholar 

  40. Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36:105–117

    Article  CAS  PubMed  Google Scholar 

  41. Maser J, Osanna A, Wang Y et al (2000) Soft X-ray microscopy with a cryo scanning transmission X-ray microscope: I. Instrumentation, imaging and spectroscopy. J Microsc (Oxford) 197:68–79

    Article  CAS  Google Scholar 

  42. Wang Y, Jacobsen C, Maser J et al (2000) Soft X-ray microscopy with a cryo scanning transmission X-ray microscope: II Tomography. J Microsc (Oxford) 197:80–93

    Article  CAS  Google Scholar 

  43. Johansson GA, Dynes JJ, Hitchcock AP et al (2006) Chemically sensitive 3D imaging at sub 100 nm spatial resolution using tomography in a scanning transmission x-ray microscope. Proc SPIE 6318. doi:10.1117/12.681217

  44. Hitchcock AP, Johansson GA, Mitchell GE et al (2008) 3-d chemical imaging using angle-scan nanotomography in a soft X-ray scanning transmission X-ray microscope. Appl Phys A Mater Sci Process 92:447–452

    Article  CAS  Google Scholar 

  45. Obst M, Hitchcock AP, Ayers T et al (2009) A novel wet cell for in situ 2D and 3D STXM studies. In: Dalzell M (ed) Canadian Light Source activity report 2008. Canadian Light Source, Inc., Saskatoon, pp 142–143

    Google Scholar 

  46. Wang J, Hitchcock AP, Karunakaran C et al (2011) 3D chemical and elemental imaging by STXM spectrotomography. In: McNulty I, Eyberger C, Lai B (eds) AIP Conference Proceedings 1365. Chicago, pp 215–218

    Google Scholar 

  47. Hilhorst J, van Schooneveld MM, Wang J et al (2012) Three-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy. Langmuir 28:3614–3620

    Article  CAS  PubMed  Google Scholar 

  48. Hitchcock AP, Araki T, Ikeura-Sekiguchi H et al (2003) 3d chemical mapping of toners by serial section scanning transmission X-ray microscopy. J Phys IV (France) 104:509–512

    Article  CAS  Google Scholar 

  49. Neu TR, Manz B, Volke F et al (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Ecol 72:1–21

    Article  CAS  Google Scholar 

  50. Weiss D, Schneider G, Niemann B et al (2000) Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy 84:185–197

    Article  CAS  PubMed  Google Scholar 

  51. Gu WW, Etkin LD, Le Gros MA et al (2007) X-ray tomography of Schizosaccharomyces pombe. Differentiation 75:529–535

    Article  CAS  PubMed  Google Scholar 

  52. Schrlau MG, Falls EM, Ziober BL et al (2008) Carbon nanopipettes for cell probes and intracellular injection. Nanotechnology 19:015101. doi:10.1088/0957-4484/19/01/015101

    Article  PubMed  Google Scholar 

  53. Hitchcock AP (2013) aXis2000 Is an IDL-based analytical package. http://unicorn.mcmaster.ca/aXis2000.html

  54. Exelis Visual Information Solutions I (2012) IDL. http://www.exelisvis.com/

  55. Fiji (2013) www.fiji.sc

  56. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682

    Article  CAS  PubMed  Google Scholar 

  57. TomoJ (2013) http://u759.curie.fr/en

  58. Sorzano CO, Messaoudi C, Eibauer M et al (2009) Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 10:124. doi:10.1186/1471-2105-10-124

    Article  PubMed Central  PubMed  Google Scholar 

  59. Messaoudii C, Boudier T, Sanchez Sorzano CO et al (2007) TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8:288. doi:10.1186/1471-2105-8-288

    Article  PubMed Central  PubMed  Google Scholar 

  60. IMOD (2012) http://bio3d.colorado.edu/imod/

  61. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  62. IMODJ (2008) http://www.snv.jussieu.fr/~wboudier/softs/imodj.html

  63. UCSF Chimera (2013) http://www.cgl.ucsf.edu/chimera/

  64. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  65. ilastik (2012) http://www.ilastik.org/.

  66. Sommer C, Straehle C, Kothe U et al (2011) Ilastik: interactive learning and segmentation toolkit. In: Proceedings. IEEE international symposium on biomedical imaging. Chicago, pp 230–233

    Google Scholar 

  67. SM-Beamline (2012) http://exshare.lightsource.ca/sm/Pages/SM-Home.aspx

  68. Myneni SCB (2002) Soft X-ray spectroscopy and spectromicroscopy studies of organic molecules in the environment. In: Fenter PA, Rivers ML, Sturchio NC et al (eds) Applications of synchrotron radiation in low-temperature geochemistry and environmental sciences. Mineralogical Society of America, Chicago, pp 485–579

    Google Scholar 

  69. Koprinarov IN, Hitchcock AP, McCrory CT et al (2002) Quantitative mapping of structured polymeric systems using singular value decomposition analysis of soft X-ray images. J Phys Chem B 106:5358–5364

    Article  CAS  Google Scholar 

  70. Dynes JJ, Lawrence JR, Korber DR et al (2006) Quantitative mapping of chlorhexidine in natural river biofilms. Sci Total Environ 369:369–383

    Article  CAS  PubMed  Google Scholar 

  71. Jacobsen C, Feser M, Lerotic M et al (2003) Cluster analysis of soft X-ray spectromicroscopy data. J Phys IV 104:623–626

    CAS  Google Scholar 

  72. Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  CAS  PubMed  Google Scholar 

  73. Wang J, Button GA, West MM et al (2009) Quantitative evaluation of radiation damage to polyethylene terephthalate by soft X-rays and high-energy electrons. J Phys Chem B 113: 1869–1876

    Article  CAS  PubMed  Google Scholar 

  74. Yang J, Regier T, Dynes JJ et al (2011) Soft X-ray induced photoreduction of organic Cu(II) compounds probed by X-ray absorption near-edge (XANES) spectroscopy. Anal Chem 83:7856–7862

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Swanner and F. Zeitvogel for proofreading of this manuscript. We thank also the beamline staff of the SM beamline at CLS for excellent support during the STXM measurements and Adam P. Hitchcock for discussion. The CLS is supported by NSERC, CIHR, NRC, the Province of Saskatchewan, WEDC, and the University of Saskatchewan. Furthermore, we thank the Geomicrobiology group Tuebingen of A. Kappler, E. Struve, and W. Kuerner for their valuable help. This work was funded by DFG Emmy-Noether program to M.O. (OB 362/1-1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Obst, M., Schmid, G. (2014). 3D Chemical Mapping: Application of Scanning Transmission (Soft) X-ray Microscopy (STXM) in Combination with Angle-Scan Tomography in Bio-, Geo-, and Environmental Sciences. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_34

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics