Skip to main content

Correlative Fluorescence and Electron Microscopy of Quantum Dot Labeled Proteins on Whole Cells in Liquid

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sali A, Glaeser R, Earnest T et al (2003) From words to literature in structural proteomics. Nature 422:216–225

    Article  CAS  PubMed  Google Scholar 

  2. Stahlberg H, Walz T (2008) Molecular electron microscopy: state of the art and current challenges. ACS Chem Biol 3:268–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pierson J, Sani M, Tomova C et al (2009) Toward visualization of nanomachines in their native cellular environment. Histochem Cell Biol 132:253–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kourkoutis LF, Plitzko JM, Baumeister W (2012) Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42:33–58

    Article  CAS  Google Scholar 

  5. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  6. Lippincott-Schwartz J, Manley S (2009) Putting super-resolution fluorescence microscopy to work. Nat Methods 6:21–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. de Jonge N, Peckys DB, Kremers GJ et al (2009) Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci U S A 106:2159–2164

    Article  PubMed Central  PubMed  Google Scholar 

  8. Ring EA, de Jonge N (2010) Microfluidic system for transmission electron microscopy. Microsc Microanal 16:622–629

    Article  CAS  PubMed  Google Scholar 

  9. Peckys DB, Mazur P, Gould KL et al (2011) Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100:2522–2529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dukes MJ, Peckys DB, de Jonge N (2010) Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4:4110–4116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ring EA, Peckys DB, Dukes MJ et al (2011) Silicon nitride windows for electron microscopy of whole cells. J Microsc (Oxford) 243:273–283

    Article  CAS  Google Scholar 

  12. Lidke DS, Nagy P, Heintzmann R et al (2004) Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat Biotechnol 22:198–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Protochips Inc. (NC, USA) for providing the silicon microchips and specimen holder. We thank Eduard Arzt for his continuous support through INM. Research in part supported by NIH grant 2R44-EB008589 (to J. Damiano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels de Jonge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Peckys, D.B., Dukes, M.J., de Jonge, N. (2014). Correlative Fluorescence and Electron Microscopy of Quantum Dot Labeled Proteins on Whole Cells in Liquid. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics