Skip to main content

Cryosectioning Fixed and Cryoprotected Biological Material for Immunocytochemistry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1117))

Abstract

Immunocytochemistry for electron microscopy provides important information on the location and relative abundance of proteins inside cells. Gaining access to this information without extracting or disrupting the location of target proteins requires specialized preparation methods. Sectioning frozen blocks of chemically fixed and cryoprotected biological material is one method for obtaining immunocytochemical data. Once the cells or tissues are cut, the cryosections are thawed, mounted onto coated grids, and labeled with specific antibodies and colloidal gold probes. They are then embedded in a thin film of plastic containing a contrasting agent. Subcellular morphology can then be correlated with specific affinity labeling by examination in the transmission electron microscope (TEM). The major advantage of using thawed cryosections for immunolabeling is that the sections remain fully hydrated through the immunolabeling steps, reducing the possibility of dehydration-induced antigen modification. Modern technical advancements both in preparation protocols and equipment design make cryosectioning a routine and rapid approach for immunocytochemistry that may provide increased sensitivity for some antibodies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Newman SB, Borysko E, Swerdlow M (1949) New method for microsectioning. Anat Rec 105:267–272

    Article  CAS  PubMed  Google Scholar 

  2. Newman SB, Borysko E, Swerdlow M (1949) New sectioning techniques for light and electron microscopy. Science 110:66–68

    Article  CAS  PubMed  Google Scholar 

  3. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323

    CAS  PubMed  Google Scholar 

  4. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4:191–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Latta H, Hartmann JF (1950) Use of a glass edge in thin sectioning for electron microscopy. Proc Soc Exp Biol Med 74:436–439

    Article  CAS  PubMed  Google Scholar 

  7. Tokuyasu K, Okamura S (1959) A new method for making glass knives for thin sectioning. J Biophys Biochem Cytol 6:305–308

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fernandez-Moran H. (1965) Method of making diamond knives. In: http://www.freepatentsonline.com/3190047.pdf, U.S.P. Office, Editor. 1965: USA

  9. Fernandez-Moran H (1953) A diamond knife for ultrathin sectioning. Exp Cell Res 5:255–256

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Moran H (1956) Applications of a diamond knife for ultrathin sectioning to the study of the fine structure of biological tissues and metals. J Biophys Biochem Cytol 2:29–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez-Moran H (1960) Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann NY Acad Sci 85:689–713

    Article  CAS  PubMed  Google Scholar 

  13. Fernandez-Moran H, Dahl AO (1952) Electron microscopy of ultrathin frozen sections of pollen grains. Science 116:465–467

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez MH (1952) Application of the ultrathin freezing-sectioning technique to the study of cell structures with the electron microscope. Ark Fys 4:471–491

    Google Scholar 

  15. Leduc EH, Bernhard W, Holt SJ et al (1967) Ultrathin frozen sections. II. Demonstration of enzymic activity. J Cell Biol 34:773–786

    Article  CAS  PubMed  Google Scholar 

  16. Christensen AK (1969) A way to prepare frozen thin sections of fresh tissue for electron microscopy. In: Roth LJ, Stumpf WE (eds) Autoradiography of diffusible substances. Academic, New York, pp 349–362

    Google Scholar 

  17. Christensen AK (1971) Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J Cell Biol 51:772–804

    Article  CAS  PubMed  Google Scholar 

  18. Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57:551–565

    Article  CAS  PubMed  Google Scholar 

  19. Painter RG, Tokuyasu KT, Singer SJ (1973) Immunoferritin localization of intracellular antigens: the use of ultracryotomy to obtain ultrathin sections suitable for direct immunoferritin staining. Proc Natl Acad Sci U S A 70:1649–1653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Tokuyasu KT, Singer SJ (1976) Improved procedures for immunoferritin labeling of ultrathin frozen sections. J Cell Biol 71:894–906

    Article  CAS  PubMed  Google Scholar 

  21. Geuze JJ, Slot JW, Tokuyasu KT (1979) Immunocytochemical localization of amylase and chymotrypsinogen in the exocrine pancreatic cell with special attention to the Golgi complex. J Cell Biol 82:697–707

    Article  CAS  PubMed  Google Scholar 

  22. Geuze HJ, Slot JW (1980) The subcellular localization of immunoglobulin in mouse plasma cells, as studied with immunoferritin cytochemistry on ultrathin frozen sections. Am J Anat 158:161–169

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths G, Hoppeler H (1986) Quantitation in immunocytochemistry: correlation of immunogold labeling to absolute number of membrane antigens. J Histochem Cytochem 34:1389–1398

    Article  CAS  PubMed  Google Scholar 

  24. van Genderen IL, van Meer G, Slot JW et al (1991) Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol 115:1009–1019

    Article  PubMed  Google Scholar 

  25. Posthuma G, Slot JW, Geuze HJ (1987) Usefulness of the immunogold technique in quantitation of a soluble protein in ultra-thin sections. J Histochem Cytochem 35:405–4010

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths G, McDowall A, Back R et al (1984) On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res 89:65–78

    Article  CAS  PubMed  Google Scholar 

  27. Tokuyasu KT (1978) A study of positive staining of ultrathin frozen sections. J Ultrastruct Res 63:287–307

    Article  CAS  PubMed  Google Scholar 

  28. Tokuyasu KT (1989) Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21:163–171

    Article  CAS  PubMed  Google Scholar 

  29. Keller GA, Tokuyasu KT, Dutton AH et al (1984) An improved procedure for immunoelectron microscopy: ultrathin plastic embedding of immunolabeled ultrathin frozen sections. Proc Natl Acad Sci U S A 81:5744–5747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rangell LK, Keller GA (2000) Application of microwave technology to the processing and immunolabeling of plastic-embedded and cryosections. J Histochem Cytochem 48:1153–1159

    Article  CAS  PubMed  Google Scholar 

  31. Takizawa T, Anderson CL, Robinson JM (2003) A new method to enhance contrast of ultrathin cryosections for immunoelectron microscopy. J Histochem Cytochem 51:31–39

    Article  CAS  PubMed  Google Scholar 

  32. Fernandez MH (1964) New approaches in correlative studies of biological ultrastructure by high-resolution electron microscopy. J R Microsc Soc 83:183–195

    Article  Google Scholar 

  33. Brands R, Slot JW, Geuze HJ (1982) Immunocytochemical localization of beta-glucuronidase in the male rat preputial gland. Eur J Cell Biol 27:213–220

    CAS  PubMed  Google Scholar 

  34. Brands R, Slot JW, Geuze HJ (1983) Albumin localization in rat liver parenchymal cells. Eur J Cell Biol 32:99–107

    CAS  PubMed  Google Scholar 

  35. Geuze HJ, Slot JW (1980) Disproportional immunostaining patterns of two secretory proteins in guinea pig and rat exocrine pancreatic cells. An immunoferritin and fluorescence study. Eur J Cell Biol 21:93–100

    CAS  PubMed  Google Scholar 

  36. Takizawa T, Robinson JM (2003) Ultrathin cryosections: an important tool for immunofluorescence and correlative microscopy. J Histochem Cytochem 51:707–714

    Article  CAS  PubMed  Google Scholar 

  37. Robinson JM, Takizawa T, Pombo A et al (2001) Correlative fluorescence and electron microscopy on ultrathin cryosections: bridging the resolution gap. J Histochem Cytochem 49:803–808

    Article  CAS  PubMed  Google Scholar 

  38. Slot JW, Geuze HJ (1981) Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol 90:533–536

    Article  CAS  PubMed  Google Scholar 

  39. Geuze HJ, Slot JW, van der Ley PA et al (1981) Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J Cell Biol 89:653–665

    Article  CAS  PubMed  Google Scholar 

  40. Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38:87–93

    CAS  PubMed  Google Scholar 

  41. Rabouille C, Strous GJ, Crapo JD et al (1993) The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol 120:897–908

    Article  CAS  PubMed  Google Scholar 

  42. Slot JW, Posthuma G, Chang LY et al (1989) Quantitative aspects of immunogold labeling in embedded and in nonembedded sections. Am J Anat 185:271–281

    Article  CAS  PubMed  Google Scholar 

  43. Posthuma G, Slot JW, Geuze HJ (1986) A quantitative immuno-electronmicroscopic study of amylase and chymotrypsinogen in peri- and tele-insular cells of the rat exocrine pancreas. J Histochem Cytochem 34:203–207

    Article  CAS  PubMed  Google Scholar 

  44. Mayhew TM (2007) Quantitative immunoelectron microscopy: alternative ways of assessing subcellular patterns of gold labeling. Methods Mol Biol 369:309–329

    Article  CAS  PubMed  Google Scholar 

  45. Mayhew TM (2009) Quantifying immunogold localization patterns on electron microscopic thin sections of placenta: recent developments. Placenta 30:565–570

    Article  CAS  PubMed  Google Scholar 

  46. Mayhew TM (2011) Mapping the distributions and quantifying the labelling intensities of cell compartments by immunoelectron microscopy: progress towards a coherent set of methods. J Anat 219:647–660

    Article  PubMed  Google Scholar 

  47. Mayhew TM (2011) Quantifying immunogold localization on electron microscopic thin sections: a compendium of new approaches for plant cell biologists. J Exp Bot 62:4101–4113

    Article  CAS  PubMed  Google Scholar 

  48. Mayhew TM, Lucocq JM (2011) Multiple-labelling immunoEM using different sizes of colloidal gold: alternative approaches to test for differential distribution and colocalization in subcellular structures. Histochem Cell Biol 135:317–326

    Article  CAS  PubMed  Google Scholar 

  49. Mayhew TM, Muhlfeld C, Vanhecke D et al (2009) A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann Anat 191:153–170

    Article  CAS  PubMed  Google Scholar 

  50. Mayhew T, Griffiths G, Habermann A et al (2003) A simpler way of comparing the labelling densities of cellular compartments illustrated using data from VPARP and LAMP-1 immunogold labelling experiments. Histochem Cell Biol 119:333–341

    CAS  PubMed  Google Scholar 

  51. Liou W, Geuze HJ, Geelen MJ et al (1997) The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 136:61–70

    Article  CAS  PubMed  Google Scholar 

  52. Liou W, Geuze HJ, Slot JW (1996) Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol 106:41–58

    Article  CAS  PubMed  Google Scholar 

  53. Bos E, SantAnna C, Gnaegi H et al (2011) A new approach to improve the quality of ultrathin cryo-sections; its use for immunogold EM and correlative electron cryo-tomography. J Struct Biol 175:62–72

    Article  CAS  PubMed  Google Scholar 

  54. Al-Amoudi A, Dubochet J, Studer D (2002) Amorphous solid water produced by cryosectioning of crystalline ice at 113 K. J Microsc (Oxford) 207:146–153

    Article  CAS  Google Scholar 

  55. Al-Amoudi A, Chang JJ, Leforestier A et al (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–3588

    Article  CAS  PubMed  Google Scholar 

  56. Mobius W, Ohno-Iwashita Y, van Donselaar EG et al (2002) Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem 50:43–55

    Article  CAS  PubMed  Google Scholar 

  57. van Donselaar E, Posthuma G, Zeuschner D et al (2007) Immunogold labeling of cryosections from high-pressure frozen cells. Traffic 8:471–485

    Article  PubMed  Google Scholar 

  58. Griffiths G, Parton RG, Lucocq J et al (1993) The immunofluorescent era of membrane traffic. Trends Cell Biol 3:214–219

    Article  CAS  PubMed  Google Scholar 

  59. Takizawa T, Robinson JM (2004) Thin is better!: ultrathin cryosection immunocytochemistry. J Nippon Med Sch 71:306–307

    Article  PubMed  Google Scholar 

  60. Peters PJ, Bos E, Griekspoor A (2006) Cryo-immunogold electron microscopy. Curr Protoc Cell Biol, Chapter 4, Unit 4 7

    Google Scholar 

  61. Griffith JM, Posthuma G (2002) A reliable and convenient method to store ultrathin thawed cryosections prior to immunolabeling. J Histochem Cytochem 50:57–62

    Article  CAS  PubMed  Google Scholar 

  62. Aebi U, Pollard TD (1987) A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J Electron Microsc Tech 7:29–33

    Article  CAS  PubMed  Google Scholar 

  63. Griffiths G (1993) Fine Structure Immuno-cytochemistry. Springer, Heidelberg

    Book  Google Scholar 

  64. Oorschot V, de Wit H, Annaert WG et al (2002) A novel flat-embedding method to prepare ultrathin cryosections from cultured cells in their in situ orientation. J Histochem Cytochem 50:1067–1080

    Article  CAS  PubMed  Google Scholar 

  65. Tajika Y, Matsuzaki T, Suzuki T et al (2003) Cryosectioning of cultured cells on permeable support. Acta Histochem Cytochem 36:119–122

    Article  Google Scholar 

  66. McDowall AW, Chang JJ, Freeman R et al (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc (Oxford) 131:1–9

    Article  CAS  Google Scholar 

  67. Hagler HK (2007) Ultramicrotomy for biological electron microscopy. Methods Mol Biol 369:67–96

    Article  CAS  PubMed  Google Scholar 

  68. Webster P (1993) A simple modification to the LKB 7800 series knifemaker and a balanced-break method to prepare glass knives for cryosectioning. J Microsc (Oxford) 169:85–88

    Article  CAS  Google Scholar 

  69. Forbes MS (1986) Hints and tips: dog hairs and section manipulators. EMSA Bull 16:67

    Google Scholar 

  70. Forbes MS (1987) Hints and tips: letter from the editor. EMSA Bull 17:87

    Google Scholar 

  71. Slot JW, Geuze HJ, Gigengack S et al (1991) Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol 113:123–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This simple set of instructions for preparing cryosections represents the combined efforts of many people. Certainly, the innovative work of Professor K. Tokyuasu made it possible to section frozen biological material while retaining ultrastructure and antigenicity. However, this innovation would not have been possible without the apparatus built by A. Kent Christensen. He built the first cryosectioning box able to fit on an ultramicrotome in the early 1970s. However, cryosectioning was first attempted by Fernandez-Moran in the 1950s [14], who was also the first to introduce the diamond knife for ultrathin sectioning [810].

Recognizing the power of cryosectioning and immunocytochemistry for cellular biology, Jan W. Slot and Hans J. Geuze (Utrecht, the Netherlands) and Gareth Griffiths (EMBL in Heidelberg, Germany) with Professor K. T. Tokuyasu in San Diego incorporated the method into their work. These pioneers worked closely to understand the cryosectioning method and introduce technical improvements. Most importantly they made the method available to the scientific community by teaching it on courses organized in their own laboratories and on courses sponsored by the European Molecular Biology Organization (EMBO), and on courses throughout the world.

EMBO has been generous in funding training courses that have introduced young scientists to immunocytochemical methods using cryosections. One important and unplanned result of the EMBO courses has been their effect on technique development. Bringing together a group of scientists together for 10 days each year has resulted in innovative developments and rapid spread of these innovations. This chapter was originally developed as a teaching aid for EMBO practical courses and is still used on these courses.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Webster, P., Webster, A. (2014). Cryosectioning Fixed and Cryoprotected Biological Material for Immunocytochemistry. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology, vol 1117. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-776-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-776-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-775-4

  • Online ISBN: 978-1-62703-776-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics