Skip to main content

Detecting Epigenetic Effects of Transposable Elements in Plants

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1112))

  • 3628 Accesses

Abstract

Transposable elements (TE) represent a major fraction of eukaryotic genomes and play many roles in plant epigenetics. In this chapter, we describe the use of Sequence-Specific Amplified Polymorphism (SSAP) as a reliable Transposon Display technique applicable for use in many plant species. We also discuss the interpretation of SSAP data and associated risks. This technique has potential to allow rapid screening of plant populations, especially in nonmodel or wild species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaut BS, Ross-Ibarra J (2008) Selection on major components of angiosperm genomes. Science 320:484–486

    Article  CAS  PubMed  Google Scholar 

  2. McClintock B (1984) The significance of responses of the genome to challenge. Science 16:792–801

    Article  Google Scholar 

  3. Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T (2003) Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. Curr Biol 13:421–426

    Article  CAS  PubMed  Google Scholar 

  4. Michalak P (2009) Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity 102:45–50

    Article  CAS  PubMed  Google Scholar 

  5. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    Article  CAS  PubMed  Google Scholar 

  6. Kalendar R, Flavell A, Ellis TH, Sjakste T, Moisy C, Schulman AH (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Article  CAS  PubMed  Google Scholar 

  7. Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (SSAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  8. Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752

    Article  CAS  PubMed  Google Scholar 

  9. Melayah D, Lim KY, Bonnivard E, Chalhoub B, De Borne FD, Mhiri C, Leitch AR, Grandbastien MA (2004) Distribution of the Tnt1 retrotransposon family in the amphidiploid tobacco (Nicotiana tabacum) and its wild Nicotiana relatives. Biol J Linn Soc 82: 639–649

    Article  Google Scholar 

  10. Petit M, Lim KY, Julio E, Poncet C, de Borne FD, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Gen Genet 278:1–15

    Article  CAS  Google Scholar 

  11. Sanz AM, Gonzalez SG, Syed NH, Suso MJ, Saldana CC, Flavell AJ (2007) Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Mol Gen Genet 278:433–441

    Article  CAS  Google Scholar 

  12. Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  13. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147

    Article  CAS  PubMed  Google Scholar 

  14. Tam S, Mhiri C, Grandbastien M-A (2006) Transposable elements and the analysis of plant biodiversity. In: Morot-Gaudry J, Lea P, Briat J (eds) Functional plant genomics. Sciences Publishers, Enfield, NH, pp 529–558

    Google Scholar 

  15. Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche ML (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    Article  CAS  PubMed  Google Scholar 

  16. Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons and the impact of readout transcription from long terminal repeats on expression of adjacent rice genes. Genetics 177:1975–1985

    Article  CAS  PubMed  Google Scholar 

  17. Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  CAS  PubMed  Google Scholar 

  18. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Takata M, Kiyohara A, Takasu A, Kishima Y, Ohtsubo H, Sano Y (2007) Rice transposable elements are characterized by various methylation environments in the genome. BMC Genomics 8:469

    Article  PubMed Central  PubMed  Google Scholar 

  20. Roberts RJ, Vincze T, Posfai J, Macelis D (2010) REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    Article  CAS  PubMed  Google Scholar 

  22. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  23. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6: 847–859

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Parisod, C., Salmon, A., Ainouche, M., Grandbastien, MA. (2014). Detecting Epigenetic Effects of Transposable Elements in Plants. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics. Methods in Molecular Biology, vol 1112. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-773-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-773-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-772-3

  • Online ISBN: 978-1-62703-773-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics