Skip to main content

Detecting Histone Modifications in Plants

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1112))

Abstract

Histone modifications play an essential role in chromatin-associated processes including gene regulation and epigenetic inheritance. It is therefore very important to quantitatively analyze histone modifications at both the single gene and whole genome level. Here, we describe a robust chromatin immunoprecipitation (ChIP) method for Arabidopsis, which could be adapted for other plant species. This method is compatible with multiple downstream applications including qPCR, tilling arrays, and high-throughput sequencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9:2–6

    Article  CAS  PubMed  Google Scholar 

  3. Lippman Z, May B, Yordan C, Singer T, Martienssen R (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol 1:e67

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  5. De Lucia F, Crevillen P, Jones AM, Greb T, Dean C (2008) A PHD-Polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 105:16831–16836

    Article  PubMed Central  PubMed  Google Scholar 

  6. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:e11

    Article  Google Scholar 

  7. Ricardi M, Gonzalez R, Iusem N (2010) Protocol: fine-tuning of a chromatin immunoprecipitation (ChIP) protocol in tomato. Plant Methods 6:e11

    Article  Google Scholar 

  8. Nelson JD, Denisenko O, Sova P, Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:e2

    Article  PubMed Central  PubMed  Google Scholar 

  9. Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung M-S, Day DS, Gadel S, Gorchakov AA, Gu T, Kharchenko PV, Kuan S, Latorre I, Linder-Basso D, Luu Y, Ngo Q, Perry M, Rechtsteiner A, Riddle NC, Schwartz YB, Shanower GA, Vielle A, Ahringer J, Elgin SCR, Kuroda MI, Pirrotta V, Ren B, Strome S, Park PJ, Karpen GH, Hawkins RD, Lieb JD (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18:91–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed Central  PubMed  Google Scholar 

  13. Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17:1978–1983

    Article  CAS  PubMed  Google Scholar 

  14. Yu X, Michaels SD (2010) The Arabidopsis Paf1c complex component CDC73 Participates in the modification of FLOWERING LOCUS C chromatin. Plant Physiol 153:1074–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD (2007) FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res 17:877–885

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Song, J., Rutjens, B., Dean, C. (2014). Detecting Histone Modifications in Plants. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics. Methods in Molecular Biology, vol 1112. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-773-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-773-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-772-3

  • Online ISBN: 978-1-62703-773-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics