The Application of Flow Cytometry for Estimating Genome Size and Ploidy Level in Plants

  • Jaume Pellicer
  • Ilia J. Leitch
Part of the Methods in Molecular Biology book series (MIMB, volume 1115)


Over the years, the amount of DNA in a nucleus (genome size) has been estimated using a variety of methods, but increasingly, flow cytometry (FCM) has become the method of choice. The popularity of this technique lies in the ease of sample preparation and in the large number of particles (i.e., nuclei) that can be analyzed in a very short period of time. This chapter presents a step-by-step guide to estimating the nuclear DNA content of plant nuclei using FCM. Attempting to serve as a tool for daily laboratory practice, we list, in detail, the equipment required, specific reagents, and buffers needed, as well as the most frequently used protocols to carry out nuclei isolation. In addition, solutions to the most common problems that users may encounter when working with plant material and troubleshooting advice are provided. Finally, information about the correct terminology to use and the importance of obtaining chromosome counts to avoid cytological misinterpretations of the FCM data are discussed.

Key words

Chromosome number DAPI DNA ploidy level Genome size Flow cytometry Flow histogram C-value PI Plant nuclei isolation Relative fluorescence 


  1. 1.
    Doležel J, Bartoš J, Voglmayr H et al (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128CrossRefGoogle Scholar
  2. 2.
    Ogur M, Erickson RO, Rosen GU et al (1951) Nucleic acids in relation to cell division in Lilium longiflorum. Exp Cell Res 2:73–89CrossRefGoogle Scholar
  3. 3.
    Bennett MD, Leitch IJ (2012) Plant DNA C-values database (release 6.0, Dec. 2012).
  4. 4.
    Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annu Rev Ecol Evol Syst 38:847–876CrossRefGoogle Scholar
  5. 5.
    Loureiro J, Travnicek P, Rauchova J et al (2010) The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plants. Preslia 82:3–21Google Scholar
  6. 6.
    Suda J, Kron P, Husband BC et al (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plants cells. Wiley-VCH, Weinheim, pp 103–130CrossRefGoogle Scholar
  7. 7.
    Leus L, Van Laere K, Dewitte A et al (2009) Flow cytometry for plant breeding. Acta Hortic 836:221–226Google Scholar
  8. 8.
    Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244PubMedCrossRefGoogle Scholar
  9. 9.
    Suda J, Krahulcova A, Travnicek P et al (2006) Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55:447–450CrossRefGoogle Scholar
  10. 10.
    Noirot M, Barre P, Louarn J et al (2002) Consequences of stoichiometric error on nuclear DNA content evaluation in Coffea liberica var. dewevrei using DAPI and propidium iodide. Ann Bot 89:385–389PubMedCrossRefGoogle Scholar
  11. 11.
    Noirot M, Barre P, Louarn J et al (2000) Nucleus-cytosol interactions: a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot 86:309–316CrossRefGoogle Scholar
  12. 12.
    Noirot M, Barre P, Duperray C et al (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot 92:259–264PubMedCrossRefGoogle Scholar
  13. 13.
    Noirot M, Barre P, Duperray C et al (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments. Consequences on data interpretation. Ann Bot 95:111–118PubMedCrossRefGoogle Scholar
  14. 14.
    Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934CrossRefGoogle Scholar
  15. 15.
    Loureiro J, Rodriguez E, Doležel J et al (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527PubMedCrossRefGoogle Scholar
  16. 16.
    Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790PubMedCrossRefGoogle Scholar
  17. 17.
    Loureiro J, Suda J, Doležel J (2007) FLOWer: a plant DNA flow cytometry database. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 423–438CrossRefGoogle Scholar
  18. 18.
    Loureiro J, Rodriguez E, Santos C et al (2008) FLOWer: a plant DNA flow cytometry database (release 1.0, May 2008).
  19. 19.
    Garnatje T, Canela MÁ, Garcia S et al (2011) GSAD: a genome size in the Asteraceae database. Cytometry A 79A:401–404CrossRefGoogle Scholar
  20. 20.
    Greilhuber J, Doležel J, Lysak MA et al (2005) The origin, evolution and proposed stabilization of the terms “Genome size” and “C-value” to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  21. 21.
    Leitch IJ, Kahandawala I, Suda J et al (2009) Genome size diversity in orchids: consequences and evolution. Ann Bot 104:469–481PubMedCrossRefGoogle Scholar
  22. 22.
    Torrell M, Valles J (2001) Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): systematic, evolutionary, and ecological implications. Genome 44: 231–238PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia S, Sanz M, Garnatje T et al (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014PubMedCrossRefGoogle Scholar
  24. 24.
    Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc Lond 82:651–663CrossRefGoogle Scholar
  25. 25.
    Lysák MA, Lexer C (2006) Towards the era of comparative evolutionary genomics in Brassicaceae. Plant Syst Evol 259:175–198CrossRefGoogle Scholar
  26. 26.
    Poggio L, Burghardt AD, Hunziker JH (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). Heredity 63:321–328CrossRefGoogle Scholar
  27. 27.
    Sliwinska E, Pisarczyk I, Pawlik A et al (2009) Measuring genome size of desert plants using dry seeds. Botany 87:127–135CrossRefGoogle Scholar
  28. 28.
    Sliwinska E, Zielinska E, Jedrzejczyk I (2005) Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry A 64A:72–79CrossRefGoogle Scholar
  29. 29.
    Kron P, Husband BC (2012) Using flow cytometry to estimate pollen DNA content: improved methodology and applications. Ann Bot 110:1067–1078. doi: 10.1093/aob/mcs1167 PubMedCrossRefGoogle Scholar
  30. 30.
    Suda J, Travnicek P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry: new prospects for plant research. Cytometry A 69A:273–280CrossRefGoogle Scholar
  31. 31.
    Bainard JD, Husband BC, Baldwin SJ et al (2011) The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19:825–842PubMedCrossRefGoogle Scholar
  32. 32.
    Kolář F, Lučanová M, Těšitel J et al (2012) Glycerol-treated nuclear suspensions: an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Res 20:303–315PubMedCrossRefGoogle Scholar
  33. 33.
    Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120CrossRefGoogle Scholar
  34. 34.
    Pfosser M, Amon A, Lelley T et al (1995) Evaluation of sensitivity of flow-cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393PubMedCrossRefGoogle Scholar
  35. 35.
    Galbraith DW, Harkins KR, Maddox JM et al (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  36. 36.
    Loureiro J, Rodriguez E, Doležel J et al (2007) Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888PubMedCrossRefGoogle Scholar
  37. 37.
    Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  38. 38.
    Bino RJ, Lanteri S, Verhoeven HA et al (1993) Flow cytometric determination of nuclear replication stages in seed tissues. Ann Bot 72: 181–187CrossRefGoogle Scholar
  39. 39.
    De Laat AMM, Blaas J (1984) Flow cytometric characterization and sorting of plant chromosomes. Theor Appl Genet 67:463–467PubMedCrossRefGoogle Scholar
  40. 40.
    Ebihara A, Ishikawa H, Matsumoto S et al (2005) Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. Am J Bot 92:1535–1547PubMedCrossRefGoogle Scholar
  41. 41.
    Matzk F, Meister A, Brutovská R et al (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282PubMedCrossRefGoogle Scholar
  42. 42.
    Otto F (1992) Preparation and staining of cells for high-resolution DNA analysis. In: Radbruch A (ed) Flow cytometry and cell sorting. Springer, Berlin, pp 101–104Google Scholar
  43. 43.
    Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisum sativum (Fabaceae). Plant Syst Evol 194:231–239CrossRefGoogle Scholar
  44. 44.
    Mishiba KI, Ando T, Mii M et al (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot 85:665–673CrossRefGoogle Scholar
  45. 45.
    Loureiro J, Rodriguez E, Doležel J et al (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689PubMedCrossRefGoogle Scholar
  46. 46.
    Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 67–102CrossRefGoogle Scholar
  47. 47.
    Hörandl E, Dobes C, Suda J et al (2011) Apomixis is not prevalent in subnival to nival plants of the European Alps. Ann Bot 108:381–390PubMedCrossRefGoogle Scholar
  48. 48.
    Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Leitch IJ, Doležel J, Wendel JF, Greilhuber J (eds) Plant genome diversity, vol 2, physical structure, behaviour and evolution of plant genomes. Springer, Wein, pp 323–344Google Scholar
  49. 49.
    Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Ser B 334:309–345CrossRefGoogle Scholar
  50. 50.
    Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631CrossRefGoogle Scholar
  51. 51.
    Doležel J, Dolezelova M, Novak FJ (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357CrossRefGoogle Scholar
  52. 52.
    Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51PubMedCrossRefGoogle Scholar
  53. 53.
    Obermayer R, Leitch IJ, Hanson L et al (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann Bot 90:209–217PubMedCrossRefGoogle Scholar
  54. 54.
    Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132CrossRefGoogle Scholar
  55. 55.
    Doležel J, Greilhuber J, Lucretti S et al (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26CrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Jaume Pellicer
    • 1
  • Ilia J. Leitch
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensSurreyUK

Personalised recommendations