Advertisement

Transposon-Based Tagging: IRAP, REMAP, and iPBS

  • Ruslan Kalendar
  • Alan H. Schulman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1115)

Abstract

Retrotransposons are a major component of virtually all eukaryotic genomes, which makes them useful as molecular markers. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. To detect polymorphisms for retrotransposon insertions, marker systems generally rely on PCR amplification between the retrotransposon termini and some component of flanking genomic DNA. The main methods of IRAP, REMAP, RBIP, and SSAP all detect the polymorphic sites at which the retrotransposon DNA is integrated into the genome. Marker systems exploiting these methods can be easily developed and are inexpensively deployed in the absence of extensive genome sequence data. Here, we describe protocols for the IRAP, REMAP, and iPBS techniques, including methods for PCR amplification with a single primer or with two primers, and agarose gel electrophoresis of the product using optimal electrophoresis buffers; we also describe iPBS techniques for the rapid isolation of retrotransposon termini and full-length elements.

Key words

Retrotransposon Molecular marker IRAP REMAP iPBS 

Notes

Acknowledgments

This work was supported by Academy of Finland grant 134079. Anne-Mari Narvanto is thanked for excellent technical assistance.

References

  1. 1.
    Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng ZJ, Murata M (2003) A centromeric tandem repeat family originating from a part of Ty3/gypsy-retroelement in wheat and its relatives. Genetics 164:665–672PubMedGoogle Scholar
  3. 3.
    Boyko E et al (2002) Combined mapping of Aegilops tauschii by retrotransposon, microsatellite, and gene markers. Plant Mol Biol 48:767–790PubMedCrossRefGoogle Scholar
  4. 4.
    Lamb JC et al (2007) Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. Curr Opin Plant Biol 10:116–122PubMedCrossRefGoogle Scholar
  5. 5.
    Meyer W et al (1993) Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol 31:2274–2280PubMedCentralPubMedGoogle Scholar
  6. 6.
    Sivolap IM, Kalendar RN, Chebotar SV (1994) The genetic polymorphism of cereals demonstrated by PCR with random primers. Tsitol Genet 28:54–61PubMedGoogle Scholar
  7. 7.
    Charlieu JP et al (1992) 3′ Alu PCR: a simple and rapid method to isolate human polymorphic markers. Nucleic Acids Res 20: 1333–1337PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar
  9. 9.
    Feschotte C, Jiang N, Wessler S (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341PubMedCrossRefGoogle Scholar
  10. 10.
    Sabot F, Schulman AH (2006) Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity 97: 381–388PubMedCrossRefGoogle Scholar
  11. 11.
    Schulman AH, Kalendar R (2005) A movable feast: diverse retrotransposons and their contribution to barley genome dynamics. Cytogenet Genome Res 110:598–605PubMedCrossRefGoogle Scholar
  12. 12.
    Hedges DJ, Batzer MA (2005) From the margins of the genome: mobile elements shape primate evolution. Bioessays 27:785–794PubMedCrossRefGoogle Scholar
  13. 13.
    Ostertag EM, Kazazian HH (2005) Genetics: LINEs in mind. Nature 435:890–891PubMedCrossRefGoogle Scholar
  14. 14.
    Jurka J (2004) Evolutionary impact of human Alu repetitive elements. Curr Opin Genet Dev 14:603–608PubMedCrossRefGoogle Scholar
  15. 15.
    Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A 101:14572–14579PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Leigh F et al (2003) Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics 269:464–474PubMedCrossRefGoogle Scholar
  17. 17.
    Kalendar R et al (2010) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530PubMedCrossRefGoogle Scholar
  18. 18.
    Waugh R et al (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694PubMedCrossRefGoogle Scholar
  19. 19.
    Vogel JM, Morgante M (1992) A microsatellite-based, multiplexed genome assay, In Plant Genome III Conference. San Diego, CA USAGoogle Scholar
  20. 20.
    Korswagen HC et al (1996) Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc Natl Acad Sci U S A 93: 14680–14685PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Van den Broeck D et al (1998) Transposon Display identifies individual transposable elements in high copy number lines. Plant J 13:121–129PubMedGoogle Scholar
  22. 22.
    Ellis THN et al (1998) Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19PubMedGoogle Scholar
  23. 23.
    Vos P et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414CrossRefGoogle Scholar
  24. 24.
    Yu G-X, Wise RP (2000) An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 43:736–749PubMedCrossRefGoogle Scholar
  25. 25.
    Porceddu A et al (2002) Development of S-SAP markers based on an LTR-like sequence from Medicago sativa L. Mol Genet Genomics 267:107–114PubMedCrossRefGoogle Scholar
  26. 26.
    Lee D et al (1990) A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Mol Biol 15:707–722PubMedCrossRefGoogle Scholar
  27. 27.
    Syed NH, Flavell AJ (2006) Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions. Nat Protoc 1:2746–2752PubMedCrossRefGoogle Scholar
  28. 28.
    Pearce SR et al (1999) Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J 19:711–717PubMedCrossRefGoogle Scholar
  29. 29.
    Vershinin AV, Ellis TH (1999) Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea. Mol Gen Genet 262:703–713PubMedCrossRefGoogle Scholar
  30. 30.
    Ramsay L et al (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17:415–425PubMedCrossRefGoogle Scholar
  31. 31.
    Hirochika H, Hirochika R (1993) Ty1-copia group retrotransposons as ubiquitous components of plant genomes. Jpn J Genet 68:35–46PubMedCrossRefGoogle Scholar
  32. 32.
    Flavell AJ et al (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20:3639–3644PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ellis THN et al (1998) Ty1-copia class retrotransposon insertion site polymorphism for linkage and diversity analysis in pea. Mol Gen Genet 260:9–19PubMedGoogle Scholar
  34. 34.
    Kalendar R et al (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A 105:5833–5838PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Witte CP et al (2001) Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc Natl Acad Sci U S A 98:13778–13783PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Corpet F (1988) Multiple sequence alignment with hierarchical-clustering. Nucleic Acids Res 16:10881–10890PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kalendar R, Lee D, Schulman AH (2009) FastPCR software for PCR primer and probe design and repeat search. Genes, Genomes and Genomics 3:1–14Google Scholar
  38. 38.
    Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137–144PubMedCrossRefGoogle Scholar
  39. 39.
    Kovarova M, Draber P (2000) New specificity and yield enhancer of polymerase chain reactions. Nucleic Acids Res 28:E70PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Baumel A et al (2002) Inter-retrotransposon amplified polymorphism (IRAP), and retrotransposon-microsatellite amplified polymorphism (REMAP) in populations of the young allopolyploid species Spartina angelica Hubbard (Poaceae). Mol Biol Evol 19:1218–1227PubMedCrossRefGoogle Scholar
  41. 41.
    Boronnikova SV, Kalendar RN (2010) Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants. Russ J Genet 46:36–42CrossRefGoogle Scholar
  42. 42.
    Belyayev A et al (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 1:6PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Smýkal P et al (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122:1385–1397PubMedCrossRefGoogle Scholar
  44. 44.
    Manninen OM et al (2006) Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571PubMedCrossRefGoogle Scholar
  45. 45.
    Tang JQ et al (1995) Alu-PCR combined with non-Alu primers reveals multiple polymorphic loci. Mamm Genome 6:345–349PubMedCrossRefGoogle Scholar
  46. 46.
    Shedlock AM, Okada N (2000) SINE insertions: powerful tools for molecular systematics. Bioessays 22:148–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Ruslan Kalendar
    • 1
  • Alan H. Schulman
    • 1
    • 2
  1. 1.MTT/BI Plant Genomics, Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Biotechnology and Food ResearchMTT Agrifood Research FinlandJokioinenFinland

Personalised recommendations