Randomly Amplified Polymorphic DNA (RAPD) and Derived Techniques

  • Kantipudi Nirmal Babu
  • Muliyar Krishna Rajesh
  • Kukkumgai Samsudeen
  • Divakaran Minoo
  • Erinjery Jose Suraby
  • Kallayan Anupama
  • Paul Ritto
Part of the Methods in Molecular Biology book series (MIMB, volume 1115)


Understanding biology and genetics at molecular level has become very important for dissection and manipulation of genome architecture for addressing evolutionary and taxonomic questions. Knowledge of genetic variation and genetic relationship among genotypes is an important consideration for classification, utilization of germplasm resources, and breeding. Molecular markers have contributed significantly in this respect and have been widely used in plant science in a number of ways, including genetic fingerprinting, diagnostics, identification of duplicates and selecting core collections, determination of genetic distances, genome analysis, developing molecular maps, and identification of markers associated with desirable breeding traits. The application of molecular markers largely depends on the type of markers employed, distribution of markers in the genome, type of loci they amplify, level of polymorphism, and reproducibility of products. Among many DNA markers available, random amplified polymorphic DNA (RAPD) is the simplest and cost-effective and can be performed in a moderate laboratory for most of its applications. In addition RAPDs can touch much of the genome and has the advantage that no prior knowledge of the genome under research is necessary. The recent improvements in the RAPD technique like AP-PCR, SCAR, DAF, SRAP, CAPS, RAMPO, and RAHM can complement the shortcomings of RAPDs and have enhanced the utility of this simple technique for specific applications. Simple protocols for these techniques are presented.

Key words

RAPD AP-PCR SCAR DAF SRAP CAPS RAMPO RAHM DNA fingerprinting Genetic diversity Population and evolutionary genetics 


  1. 1.
    Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222CrossRefGoogle Scholar
  4. 4.
    Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535Google Scholar
  5. 5.
    Arif IA, Bakir MA, Khan HA, Al Farhan AH, Al Homaidan AA, Bahkali AH, Al Sadoon M, Shobrak M (2010) A brief review of molecular techniques to assess plant diversity. Int J Mol Sci 11:2079–2096Google Scholar
  6. 6.
    Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid, wheat genotypes. Theor Appl Genet 84:835–838PubMedGoogle Scholar
  7. 7.
    dos Santos JB, Nienhuis J, Skroch P, Tivang J, Slocum MK (1994) Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet 87:909–915CrossRefPubMedGoogle Scholar
  8. 8.
    Maria D, Angela P, Chialexei L (2008) Characteristics of RAPD markers inbreeding of Cucumis sativus L. Roum Biotech Lett 13:3843–3850Google Scholar
  9. 9.
    Khadari B, Breton C, Moutier N, Roger JP, Besnard G, Bervillé A, Dosba F (2003) The use of molecular markers for germplasm management in a French olive collection. Theor Appl Genet 106:521–529Google Scholar
  10. 10.
    Tinker NA, Fortin MG, Mather DE (1993) Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor Appl Genet 85:976CrossRefPubMedGoogle Scholar
  11. 11.
    Mailer RJ, Scarth R, Fristensk B (1994) Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphism amplified from arbitrary primers. Theor Appl Genet 87:697–704CrossRefPubMedGoogle Scholar
  12. 12.
    Marshall P, Marchand MC, Lisieczko Z, Landry BS (1994) A simple method to estimate the percentage of hybridity in canola (Brassica napus) F1 hybrids. Theor Appl Genet 89:853–858PubMedGoogle Scholar
  13. 13.
    Congiu L, Chicca M, Cella R, Rossi R, Bernacchia G (2000) The use of randomly amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol Ecol 9:229–232CrossRefPubMedGoogle Scholar
  14. 14.
    Bligh HFJ (2000) Detection of adulteration of Basmati rice with non premium long grain rice. Int J Food Sci Tech 35:257–265CrossRefGoogle Scholar
  15. 15.
    Adams RP, Demeke T (1993) Systematic relationships in Juniperus based on random amplified polymorphic DNA. Taxon 42:553–571CrossRefGoogle Scholar
  16. 16.
    Wilkie SE, Issac PG, Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86:497–504CrossRefPubMedGoogle Scholar
  17. 17.
    Isabel N, Tremblay l, Michaud M, Tremblay FM, Bousquet J (1993) RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) B.S.P. Theor Appl Genet 86:81–87CrossRefPubMedGoogle Scholar
  18. 18.
    Lewis PO, Snow AA (1992) Deterministic paternity exclusion using RAPD markers. Mol Ecol 1:155–160CrossRefPubMedGoogle Scholar
  19. 19.
    Crawford DJ, Brauner S, Cosner MB, Steussy TF (1993) Use of RAPD markers to document the origin of intergeneric hybrid Margyracaena skottsbergii (rosaceae) on the Juan Fernandez Islands. Am J Bot 80:89–92CrossRefGoogle Scholar
  20. 20.
    Waugh R, Baird E, Powell W (1992) The use of RAPD markers for the detection of gene introgression in potato. Plant Cell Rep 11:466–469CrossRefPubMedGoogle Scholar
  21. 21.
    Halima HS, Bahy AA, Tian-Hua H, Da-Nian Q, Xiao-Mei W, Qing-Dong X (2007) Use of random amplified polymorphic DNA analysis for economically important food crops. J Integr Plant Biol 49(12):1670–1680CrossRefGoogle Scholar
  22. 22.
    Hedrick P (1992) Shooting the RAPDs. Nature 355:679–680CrossRefGoogle Scholar
  23. 23.
    Smith JSC, Williams JGK (1994) Arbitrary primer mediated fingerprinting in plants: case studies in plant breeding, taxonomy and phylogeny. In: Schierwater B, Streit B, Wagner GP, DeSalle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser Verlag Basel, Switzerland, pp 5–15CrossRefGoogle Scholar
  24. 24.
    Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to Downy Mildew resistance genes in lettuce. Theor Appl Genet 85:985–993CrossRefPubMedGoogle Scholar
  25. 25.
    Jones CJ et al (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390CrossRefGoogle Scholar
  26. 26.
    Skroch P, Nienhuis J (1995) Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes. Theor Appl Genet 91:1078–1085PubMedGoogle Scholar
  27. 27.
    Challahan LM, Weaver KR, Caetano-Anolles G, Bassam BJ, Gresshoff PM (1993) DNA fingerprinting of turfgrasses. Int Turfgrass Soc Res J 7:761–767Google Scholar
  28. 28.
    Caetano-Anollés G, Gresshoff PM (1994) DNA amplification fingerprinting using arbitrary mini-hairpin oligonucleotide primers. Biotechnology 12:619–623CrossRefPubMedGoogle Scholar
  29. 29.
    Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Rafalski JA, Tingey SV (1993) Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet 9:275–280CrossRefPubMedGoogle Scholar
  32. 32.
    Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Welsh J, Honeycutt RS, McClelland M, Sobral BWS (1991) Parentage determination in maize hybrids using the arbitrarily primed polymerase chain reaction (AP-PCR). Theor Appl Genet 82:473–476CrossRefPubMedGoogle Scholar
  34. 34.
    Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification finger printing using short arbitrary oligonucleotide primers. Biotechnology 9:553–557CrossRefPubMedGoogle Scholar
  35. 35.
    Somsri S, Bussabakornkul S (2008) Identification of certain papaya cultivars and sex identification in papaya by DNA amplification fingerprinting (DAF). Acta Hort (ISHS) 787:197–206Google Scholar
  36. 36.
    Luro S (1995) DNA amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in citrus. Hort 30(5):1063–1067Google Scholar
  37. 37.
    Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–546CrossRefGoogle Scholar
  38. 38.
    Cifarelli RA, Gallitelli M, Cellini F (1995) Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite containing DNA clones. Nucleic Acid Res 23:3802–3803CrossRefPubMedGoogle Scholar
  39. 39.
    Richardson T, Cato S, Ramser J, Kahl G, Weising K (1995) Hybridization of microsatellites to RAPD: a new source of polymorphic markers. Nucleic Acids Res 23:3798–3799PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-nomically important pathogen based markers. Plant J 4:403–410CrossRefGoogle Scholar
  41. 41.
    Jarvis P, Lister C, Szabo V, Dean C (1994) Integration of CAPS markers into the RFLP map generated using recombinant inbred lines of Arabidopsis thaliana. Plant Mol Biol 24:685–687CrossRefPubMedGoogle Scholar
  42. 42.
    Doyle JJ, Doyle LJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  43. 43.
    Rohlf FJ (1998) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Publications Setauket, New YorkGoogle Scholar
  44. 44.
    Demeke T, Adams RP (1994) The use of RAPD-PCR analysis in plant taxonomy and evolution. In: Griffin HG, Griffin AM (eds) PCR technology: current innovations. CRC Press, Boca Raton, FLGoogle Scholar
  45. 45.
    Micheli MR, Bova R, Pascale E, D’Ambrosio E (1994) Reproducible DNA fingerprinting with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Res 22:1921–1922PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Wolff K, Schoen ED, Peters-Van RJ (1993) Optimizing the generation of random amplified polymorphic DNA in chrysanthemum. Theor Appl Genet 86:1033–1037CrossRefPubMedGoogle Scholar
  47. 47.
    Lamboy WF (1994) Computing genetic similarity coefficients from RAPD data: the effects of PCR artifacts. PCR Meth Appl 4:31–37CrossRefGoogle Scholar
  48. 48.
    Lamboy WF (1994) Computing genetic similarity coefficients from RAPD data: correcting for the effects of PCR artifacts caused by variation in experimental conditions. PCR Meth Appl 4:38–43CrossRefGoogle Scholar
  49. 49.
    Hernandez P, Martin A, Dorado G (1999) Development of SCARs by direct sequencing of RAPD products: a practical tool for introgression and marker-assisted selection of wheat. Mol Breed 5:245–253CrossRefGoogle Scholar
  50. 50.
    Davis MJJ, Bailey CS, Smith CK (1997) Increased informativeness of RAPD analysis by detection of microsatellite motifs. Biotechniques 23:285–290Google Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Kantipudi Nirmal Babu
    • 1
  • Muliyar Krishna Rajesh
    • 2
  • Kukkumgai Samsudeen
    • 2
  • Divakaran Minoo
    • 3
  • Erinjery Jose Suraby
    • 1
  • Kallayan Anupama
    • 1
  • Paul Ritto
    • 1
  1. 1.Indian Institute of Spices ResearchKozhikodeIndia
  2. 2.Central Plantation Crops Research InstituteKasaragodIndia
  3. 3.Providence Women’s CollegeKozhikodeIndia

Personalised recommendations