Advertisement

Plant Taxonomy: A Historical Perspective, Current Challenges, and Perspectives

  • Germinal Rouhan
  • Myriam Gaudeul
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1115)

Abstract

Taxonomy is the science that explores, describes, names, and classifies all organisms. In this introductory chapter, we highlight the major historical steps in the elaboration of this science that provides baseline data for all fields of biology and plays a vital role for society but is also an independent, complex, and sound hypothesis-driven scientific discipline.

In a first part, we underline that plant taxonomy is one of the earliest scientific disciplines that emerged thousands of years ago, even before the important contributions of Greeks and Romans (e.g., Theophrastus, Pliny the Elder, and Dioscorides). In the fifteenth to sixteenth centuries, plant taxonomy benefited from the Great Navigations, the invention of the printing press, the creation of botanic gardens, and the use of the drying technique to preserve plant specimens. In parallel with the growing body of morpho-anatomical data, subsequent major steps in the history of plant taxonomy include the emergence of the concept of natural classification, the adoption of the binomial naming system (with the major role of Linnaeus) and other universal rules for the naming of plants, the formulation of the principle of subordination of characters, and the advent of the evolutionary thought. More recently, the cladistic theory (initiated by Hennig) and the rapid advances in DNA technologies allowed to infer phylogenies and to propose true natural, genealogy-based classifications.

In a second part, we put the emphasis on the challenges that plant taxonomy faces nowadays. The still very incomplete taxonomic knowledge of the worldwide flora (the so-called taxonomic impediment) is seriously hampering conservation efforts that are especially crucial as biodiversity enters its sixth extinction crisis. It appears mainly due to insufficient funding, lack of taxonomic expertise, and lack of communication and coordination. We then review recent initiatives to overcome these limitations and to anticipate how taxonomy should and could evolve. In particular, the use of molecular data has been era-splitting for taxonomy and may allow an accelerated pace of species discovery. We examine both strengths and limitations of such techniques in comparison to morphology-based investigations, we give broad recommendations on the use of molecular tools for plant taxonomy, and we highlight the need for an integrative taxonomy based on evidence from multiple sources.

Key words

Classification Floras DNA History Molecular taxonomy Molecular techniques Morpho-anatomical investigations Plant taxonomy Species Taxonomic impediment 

References

  1. 1.
    Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129Google Scholar
  2. 2.
    Carvalho d M R, Bockmann FA, Amorim DS, de Vivo M, de Toledo-Piza M, Menezes NA, de Figueiredo JL, Castro RMC, Gill AC, McEachran JD, Compagno LJV, Schelly RC, Britz R, Lundberg JG, Vari RP, Nelson G (2005) Revisiting the taxonomic impediment. Science 307:353PubMedGoogle Scholar
  3. 3.
    Candolle AP (1813) Théorie Élémentaire de la botanique, ou Exposition des principes de la classification naturelle et de l'art de décrire et d'étudier les végétaux.Google Scholar
  4. 4.
    Heywood VH, Watson RT (1995) Global biodiversity assessment. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Simpson GG (1961) Principles of animal taxonomy. New York, Columbia Univ. PressGoogle Scholar
  7. 7.
    Tillier S (2000) Systématique - Ordonner la diversité du Vivant. Rapport sur la science et la technologie de l'Académie des sciences n°11. Éditions Tec & Doc.Google Scholar
  8. 8.
    Small E (1989) Of biological systematics (or taxonomy of taxonomy). Taxon 38:335–356Google Scholar
  9. 9.
    Sprague JL, Lanjouw J, Andreas CH (1948) Chron Bot 12(1/2):12Google Scholar
  10. 10.
    Morton CV (1957) The misuse of the term taxon. Taxon 6(5):155Google Scholar
  11. 11.
    Raven PH (2004) Taxonomy: where are we now? Philos Trans R Soc Lond B Biol Sci 359:729–730PubMedGoogle Scholar
  12. 12.
    Pavord A (2005) The naming of names: the search for order in the world of plants. Bloomsbury, New-YorkGoogle Scholar
  13. 13.
    Funk VA, Hoch PC, Prather LA, Wagner WL (2005) The importance of vouchers. Taxon 54:127–129Google Scholar
  14. 14.
    Knapp S (2012) What's in a name? A history of taxonomy. http://www.nhm.ac.uk/nature-online/science-of-natural-history/taxonomy-systematics/history-taxonomy. Accessed Jan 2012
  15. 15.
    Griffing LR (2011) Who invented the dichotomous Key? Richard Waller's watercolors of the herbs of Britain. Am J Bot 98:1911–1923PubMedGoogle Scholar
  16. 16.
    Linnaeus C (1753) Species Plantarum. Holmiae: Impensis Laurentii Salvii.Google Scholar
  17. 17.
    Linnaeus C (1758) Systema naturae, 10th edn. Holmiae: Impensis Laurentii Salvii.Google Scholar
  18. 18.
    Candolle AP (1867) Lois de la nomenclature botanique adoptées par le Congrès international de botanique: tenu à Paris en août 1867. H. Georg, GenevaGoogle Scholar
  19. 19.
    Jussieu AL (1789) Genera plantarum. Herissant, ParisGoogle Scholar
  20. 20.
    Philippe H, Lecointre G, VanLe HL, LeGuyader H (1996) A critical study of homoplasy in molecular data with the use of a morphologically based cladogram, and its consequences for character weighting. Mol Biol Evol 13:1174–1186Google Scholar
  21. 21.
    Lamarck, JBPAM (1809) Philosophie zoologique. ParisGoogle Scholar
  22. 22.
    Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  23. 23.
    Haeckel E (1866) Generelle Morphologie der Organismen. Reimer, BerlinGoogle Scholar
  24. 24.
    Dayrat B (2003) The roots of phylogeny: how did Haeckel build his trees? Syst Biol 52:515–527PubMedGoogle Scholar
  25. 25.
    Davis PH, Heywood PH (1963) Principles of angiosperm taxonomy. Oliver and Boyd, Edinburgh and LondonGoogle Scholar
  26. 26.
    Sneath PHA, Sokal RR (1963) Principles of numerical taxonomy, 7th edn. W. H. Freeman, San FranciscoGoogle Scholar
  27. 27.
    Hennig W (1950) Grundzüge einer Theorie der phylogenetischen SystematikGoogle Scholar
  28. 28.
    Hennig W (1966) Phylogenetic Systematics (tr. D. Davis and R. Zangerl). Univ. of Illinois Press, Urbana.Google Scholar
  29. 29.
    Godfray HCJ, Knapp S (2004) Taxonomy for the twenty-first century – Introduction. Philos Trans R Soc Lond B Biol Sci 359:559–569PubMedGoogle Scholar
  30. 30.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA invitro – the polymerase Chain-reaction. Cold Spring Harb Symp Quant Biol 51:263–273PubMedGoogle Scholar
  31. 31.
    Bremer K, Chase MW, Stevens PF, Anderberg AA, Backlund A, Bremer B, Briggs BG, Endress PK, Fay MF, Goldblatt P, Gustafsson MHG, Hoot SB, Judd WS, Kallersjo M, Kellogg EA, Kron KA, Les DH, Morton CM, Nickrent DL, Olmstead RG, Price RA, Quinn CJ, Rodman JE, Rudall PJ, Savolainen V, Soltis DE, Soltis PS, Sytsma KJ, Thulin M, Grp AP (1998) An ordinal classification for the families of flowering plants. Ann Mo Bot Gard 85:531–553Google Scholar
  32. 32.
    Bremer B, Bremer K, Chase MW, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Fay MF, Goldblatt P, Judd WS, Kallersjo M, Karehed J, Kron KA, Lundberg J, Nickrent DL, Olmstead RG, Oxelman B, Pires JC, Rodman JE, Rudall PJ, Savolainen V, Sytsma KJ, van der Bank M, Wurdack K, Xiang JQY, Zmarzty S, Grp AP (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436Google Scholar
  33. 33.
    Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang JQY, Zmarzty S, Grp AP (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121Google Scholar
  34. 34.
    Bessey CE (1915) The phylogenetic taxonomy of flowering plants. Ann Mo Bot Gard 2:109–164Google Scholar
  35. 35.
    Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New-YorkGoogle Scholar
  36. 36.
    Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap, CambridgeGoogle Scholar
  37. 37.
    Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New-YorkGoogle Scholar
  38. 38.
    Thorne RF (1976) A phylogenetic classification of the Angiospermae. Evol Biol 9:35–106Google Scholar
  39. 39.
    Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer associates, SunderlandGoogle Scholar
  40. 40.
    Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B Biol Sci 270:313–321Google Scholar
  41. 41.
    May RM (2004) Tomorrow's taxonomy: collecting new species in the field will remain the rate-limiting step. Philos Trans R Soc Lond B Biol Sci 359:733–734PubMedGoogle Scholar
  42. 42.
    May RM (2011) Why worry about how many species and their loss? Plos Biol 9Google Scholar
  43. 43.
    Paton AJ, Brummitt N, Govaerts R, Harman K, Hinchcliffe S, Allkin B, Lughadha EN (2008) Towards target 1 of the global strategy for plant conservation: a working List of all known plant species – progress and prospects. Taxon 57:602–611Google Scholar
  44. 44.
    Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80Google Scholar
  45. 45.
    Wilson EO (2004) Taxonomy as a fundamental discipline. Philos Trans R Soc Lond B Biol Sci 359:739PubMedGoogle Scholar
  46. 46.
    Candolle AP (1824–1873) Prodromus systematis naturalis regni vegetabilis. Parisii: Sumptibus Sociorum Treuttel et Würtz.Google Scholar
  47. 47.
    International Plant Names Index (2008) Published on the Internet. http://www.ipni.org. Accessed Apr 2012
  48. 48.
    Scotland RW, Wortley AH (2003) How many species of seed plants are there? Taxon 52:101–104Google Scholar
  49. 49.
    The Plant List (2010) Version 1. Published on the Internet. http://www.theplantlist.org/. Accessed 1 Jan
  50. 50.
    Wortley AH, Scotland RW (2004) Synonymy, sampling and seed plant numbers. Taxon 53:478–480Google Scholar
  51. 51.
    Mallet J, Willmott K (2003) Taxonomy: renaissance or Tower of Babel? Trends Ecol Evol 18:57–59Google Scholar
  52. 52.
    Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19:464–469PubMedGoogle Scholar
  53. 53.
    Meiri S, Mace GM (2007) New taxonomy and the origin of species. Plos Biol 5:1385–1386Google Scholar
  54. 54.
    Pillon Y, Chase MW (2007) Taxonomic exaggeration and its effects on orchid conservation. Conserv Biol 21:263–265PubMedGoogle Scholar
  55. 55.
    Crane PR (2004) Documenting plant diversity: unfinished business. Philos Trans R Soc Lond B Biol Sci 359:735–737PubMedGoogle Scholar
  56. 56.
    Joppa LN, Roberts DL, Pimm SL (2011) How many species of flowering plants are there? Proc R Soc B Biol Sci 278:554–559Google Scholar
  57. 57.
    Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? Plos Biol 9Google Scholar
  58. 58.
    Bisby FA, Roskov YR., Orrell TM, Nicolson D, Paglinawan LE et al (2010) Species 2000 & ITIS Catalogue of Life: 2010 Annual Checklist. Digital resource at http://www.catalogueoflife.org/annual-checklist/2010. Species 2000: Reading, UK.
  59. 59.
    Caldecott JO, Jenkins MD, Johnson TH, Groombridge B (1996) Priorities for conserving global species richness and endemism. Biodivers Conserv 5:699–727Google Scholar
  60. 60.
    Joppa LN, Roberts DL, Myers N, Pimm SL (2011) Biodiversity hotspots house most undiscovered plant species. Proc Natl Acad Sci USA 108:13171–13176PubMedGoogle Scholar
  61. 61.
    Callmander MW, Schatz GE, Lowry PP (2005) IUCN Red List assessment and the global strategy for plant conservation: taxonomists must act now. Taxon 54:1047–1050Google Scholar
  62. 62.
    Godfray HCJ (2002) Challenges for taxonomy – the discipline will have to reinvent itself if it is to survive and flourish. Nature 417:17–19PubMedGoogle Scholar
  63. 63.
    Funk VA (2006) Floras: a model for biodiversity studies or a thing of the past? Taxon 55:581–588Google Scholar
  64. 64.
    Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science 303:285PubMedGoogle Scholar
  65. 65.
    Wheeler QD, Knapp S et al (2012) Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. SystBiodivers 10(1):1–20Google Scholar
  66. 66.
    Ebach MC, Valdecasas AG, Wheeler QD (2011) Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics 27:550–557Google Scholar
  67. 67.
    Ronquist F, Gardenfors U (2003) Taxonomy and biodiversity inventories: time to deliver. Trends Ecol Evol 18:269–270Google Scholar
  68. 68.
    Joly CA (2006) Taxonomy: programmes developing in the south too. Nature 440:24PubMedGoogle Scholar
  69. 69.
    Schatz GE, Lowry PP, Ramisamihantanirina A (1998) Takhtajania perrieri rediscovered. Nature 391:133–134Google Scholar
  70. 70.
    Jones WG, Hill KD, Allen JM (1995) Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea 6:173–176Google Scholar
  71. 71.
    Mabberley DJ (2009) Exploring Terra Incognita. Science 324:472PubMedGoogle Scholar
  72. 72.
    Thulin M (2007) Acacia fumosa sp nov (Fabaceae) from eastern Ethiopia. Nord J Bot 25:272–274Google Scholar
  73. 73.
    Dransfield J, Rakotoarinivo M, Baker WJ, Bayton RP, Fisher JB, Horn JW, Leroy B, Metz X (2008) A new coryphoid palm genus from madagascar. Bot J Linn Soc 156:79–91Google Scholar
  74. 74.
    Agnarsson I, Kuntner M (2007) Taxonomy in a changing world: seeking solutions for a science in crisis. Syst Biol 56:531–539PubMedGoogle Scholar
  75. 75.
    Crisci JV (2006) One-dimensional systematist: perils in a time of steady progress. Syst Bot 31:217–221Google Scholar
  76. 76.
    Joppa LN, Roberts DL, Pimm SL (2011) The population ecology and social behaviour of taxonomists. Trends Ecol Evol 26:551–553PubMedGoogle Scholar
  77. 77.
    Rodman JE, Cody JH (2003) The taxonomic impediment overcome: NSF's partnerships for enhancing expertise in taxonomy (PEET) as a model. Syst Biol 52:428–435PubMedGoogle Scholar
  78. 78.
    Bebber DP et al (2012) Big hitting collectors make massive and disproportionate contribution to the discovery of plant species. Proc R Soc B 279:2269–2274Google Scholar
  79. 79.
    Thiers B (2011) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/ih/
  80. 80.
    Bebber DP, Carine MA, Wood JRI, Wortley AH, Harris DJ, Prance GT, Davidse G, Paige J, Pennington TD, Robson NKB, Scotland RW (2010) Herbaria are a major frontier for species discovery. Proc Natl Acad Sci USA 107:22169–22171PubMedGoogle Scholar
  81. 81.
    Godfray HCJ, Clark BR, Kitching IJ, Mayo SJ, Scoble MJ (2007) The Web and the structure of taxonomy. Syst Biol 56:943–955PubMedGoogle Scholar
  82. 82.
    Knapp S, McNeill J, Turland NJ (2011) Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne – what does e-publication mean for you? BMC Evol Biol 11:250Google Scholar
  83. 83.
    Hebert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54:852–859PubMedGoogle Scholar
  84. 84.
    Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc B Biol Sci 360:1805–1811Google Scholar
  85. 85.
    Wiens JJ (2007) Species delimitation: new approaches for discovering diversity. Syst Biol 56:875–878PubMedGoogle Scholar
  86. 86.
    Pannell JR (2009) Mating-system evolution: succeeding by celibacy. Curr Biol 19:R983–R985PubMedGoogle Scholar
  87. 87.
    Hood ME, Antonovics J (2003) Plant species descriptions show signs of disease. Proc R Soc Lond Ser B Biol Sci 270:S156–S158Google Scholar
  88. 88.
    Duminil J, Di Michele M (2009) Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst 143:528–542Google Scholar
  89. 89.
    Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155PubMedGoogle Scholar
  90. 90.
    Grundt HH, Kjolner S, Borgen L, Rieseberg LH, Brochmann C (2006) High biological species diversity in the arctic flora. Proc Natl Acad Sci USA 103:972–975PubMedGoogle Scholar
  91. 91.
    Pillon Y, Hopkins HCF, Munzinger J, Amir H, Chase MW (2009) Cryptic species, gene recombination and hybridization in the genus Spiraeanthemum (Cunoniaceae) from New Caledonia. Bot J Linn Soc 161:137–152Google Scholar
  92. 92.
    Dulvy NK, Reynolds JD (2009) Biodiversity skates on thin ice. Nature 462:417PubMedGoogle Scholar
  93. 93.
    Robertson A, Newton AC, Ennos RA (2004) Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Mol Ecol 13:123–134PubMedGoogle Scholar
  94. 94.
    Squirrell J, Hollingsworth PM, Bateman RM, Tebbitt MC, Hollingsworth ML (2002) Taxonomic complexity and breeding system transitions: conservation genetics of the Epipactis leptochila complex (Orchidaceae). Mol Ecol 11:1957–1964PubMedGoogle Scholar
  95. 95.
    van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc Lond B Biol Sci 358:1113–1121PubMedGoogle Scholar
  96. 96.
    Ennos RA, French GC, Hollingsworth PM (2005) Conserving taxonomic complexity. Trends Ecol Evol 20:164–168PubMedGoogle Scholar
  97. 97.
    Ennos RA, Whitlock R, Fay MF, Jones B, Neaves LE, Payne R, Taylor I, De Vere N, Hollingsworth PM (2012) Process-based species action plans: an approach to conserve contemporary evolutionary processes that sustain diversity in taxonomically complex groups. Bot J Linn Soc 168:194–203Google Scholar
  98. 98.
    Li FW, Tan BC, Buchbender V, Moran RC, Rouhan G, Wang CN, Quandt D (2009) Identifying a mysterious aquatic fern gametophyte. Plant Syst Evol 281:77–86Google Scholar
  99. 99.
    Van Deynze A, Stoffel K (2006) High-throughput DNA extraction from seeds. Seed Sci Technol 34:741–745Google Scholar
  100. 100.
    Asif MJ, Cannon CH (2005) DNA extraction from processed wood: a case study for the identification of an endangered timber species (Gonystylus bancanus). Plant Mol Biol Rep 23:185–192Google Scholar
  101. 101.
    Colpaert N, Cavers S, Bandou E, Caron H, Gheysen G, Lowe AJ (2005) Sampling tissue for DNA analysis of trees: trunk cambium as an alternative to canopy leaves. Silvae Genet 54:265–269Google Scholar
  102. 102.
    Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Rep 24:45–55Google Scholar
  103. 103.
    Tibbits JFG, McManus LJ, Spokevicius AV, Bossinger G (2006) A rapid method for tissue collection and high-throughput isolation of genomic DNA from mature trees. Plant Mol Biol Rep 24:81–91Google Scholar
  104. 104.
    Novaes RML, Rodrigues JG, Lovato MB (2009) An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. Genet Mol Res 8:86–96PubMedGoogle Scholar
  105. 105.
    Deguilloux MF, Pemonge MH, Petit RJ (2002) Novel perspectives in wood certification and forensics: dry wood as a source of DNA. Proc R Soc B Biol Sci 269:1039–1046Google Scholar
  106. 106.
    Hiiesalu I, Opik M, Metsis M, Lilje L, Davison J, Vasar M, Moora M, Zobel M, Wilson SD, Partel M (2012) Plant species richness belowground: higher richness and new patterns revealed by next-generation sequencing. Mol Ecol 21:2004–2016PubMedGoogle Scholar
  107. 107.
    Kesanakurti PR, Fazekas AJ, Burgess KS, Percy DM, Newmaster SG, Graham SW, Barrett SCH, Hajibabaei M, Husband BC (2011) Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. Mol Ecol 20:1289–1302PubMedGoogle Scholar
  108. 108.
    Dunn CP (2003) Keeping taxonomy based in morphology. Trends Ecol Evol 18:270–271Google Scholar
  109. 109.
    Santos LM, Faria LRR (2011) The taxonomy’s new clothes: a little more about the DNA-based taxonomy. Zootaxa 3025:66–68Google Scholar
  110. 110.
    Schaefer H, Carine MA, Rumsey FJ (2011) From European priority species to invasive weed: Marsilea azorica (Marsileaceae) is a misidentified alien. Syst Bot 36:845–853Google Scholar
  111. 111.
    Launert GOE, Paiva JAR (1983) Iconographia selecta florae Azoricae. Coimbra 2:159Google Scholar
  112. 112.
    Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66Google Scholar
  113. 113.
    Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227Google Scholar
  114. 114.
    Stace CA (2005) Plant taxonomy and biosystematics – does DNA provide all the answers? Taxon 54:999–1007Google Scholar
  115. 115.
    Linder CR, Rieseberg LH (2004) Reconstructing patterns of reticulate evolution UN plants. Am J Bot 91:1700–1708PubMedCentralGoogle Scholar
  116. 116.
    Vriesendorp B, Bakker FT (2005) Reconstructing patterns of reticulate evolution in angiosperms: what can we do? Taxon 54:593–604Google Scholar
  117. 117.
    Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185PubMedGoogle Scholar
  118. 118.
    Harrison N, Kidner CA (2011) Next-generation sequencing and systematics: what can a billion base pairs of DNA sequence data do for you? Taxon 60:1552–1566Google Scholar
  119. 119.
    Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Am J Bot 99:349–364PubMedGoogle Scholar
  120. 120.
    Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM (2001) Rapid diversification of a species-rich genus of neotropical rain forest trees. Science 293:2242–2245PubMedGoogle Scholar
  121. 121.
    Baldwin BG, Sanderson MJ (1998) Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA 95:9402–9406PubMedGoogle Scholar
  122. 122.
    Wang AL, Yang MH, Liu JQ (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann Bot 96:489–498PubMedGoogle Scholar
  123. 123.
    Hodges SA, Arnold ML (1994) Columbines – a geographically widespread species flock. Proc Natl Acad Sci USA 91:5129–5132PubMedGoogle Scholar
  124. 124.
    Linder HP (2008) Plant species radiations: where, when, why? Philos Trans R Soc B Biol Sci 363:3097–3105Google Scholar
  125. 125.
    Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74Google Scholar
  126. 126.
    Hey J, Pinho C (2012) Population genetics and objectivity in species diagnosis. Evolution 66:1413–1429PubMedGoogle Scholar
  127. 127.
    Knowles L, Carstens B (2007) Delimiting species without monophyletic gene trees. Syst Biol 56:887–895PubMedGoogle Scholar
  128. 128.
    Staats M, Cuenca A, Richardson JE, Vrielink-van Ginkel R, Petersen G, Seberg O, Bakker FT (2011) DNA damage in plant herbarium tissue. Plos One 6Google Scholar
  129. 129.
    Seberg O, Humphries CJ, Knapp S, Stevenson DW, Petersen G, Scharff N, Andersen NM (2003) Shortcuts in systematics? A commentary on DNA-based taxonomy. Trends Ecol Evol 18:63–65Google Scholar
  130. 130.
    Lister DL, Bower MA, Howe CJ, Jones MK (2008) Extraction and amplification of nuclear DNA from herbarium specimens of emmer wheat: a method for assessing DNA preservation by maximum amplicon length recovery. Taxon 57:254–258Google Scholar
  131. 131.
    Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642PubMedGoogle Scholar
  132. 132.
    Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A (2007) Genetic variation in time and space: the use of herbarium specimens to reconstruct patterns of genetic variation in the endangered orchid Anacamptis palustris. Conserv Genet 8:629–639Google Scholar
  133. 133.
    Erkens RHJ, Cross H, Maas JW, Hoenselaar K, Chatrou LW (2008) Assessment of age and greenness of herbarium specimens as predictors for successful extraction and amplification of DNA. Blumea 53:407–428Google Scholar
  134. 134.
    Drabkova L, Kirschner J, Vlcek C (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Mol Biol Rep 20:161–175Google Scholar
  135. 135.
    Jankowiak K, Buczkowska K, Szweykowska-Kulinska Z (2005) Successful extraction of DNA from 100-year-old herbarium specimens of the liverwort Bazzania trilobata. Taxon 54:335–336Google Scholar
  136. 136.
    Korpelainen H, Pietilainen M (2008) Effort to reconstruct past population history in the fern Blechnum spicant. J Plant Res 121:293–298PubMedGoogle Scholar
  137. 137.
    Savolainen V, Cuenoud P, Spichiger R, Martinez MDP, Crevecoeur M, Manen JF (1995) The use of herbarium specimens in DNA phylogenetics – evaluation and improvement. Plant Syst Evol 197:87–98Google Scholar
  138. 138.
    Ribeiro RA, Lovato MB (2007) Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Genet Mol Res 6:173–187PubMedGoogle Scholar
  139. 139.
    Andreasen K, Manktelow M, Razafimandimbison SG (2009) Successful DNA amplification of a more than 200-year-old herbarium specimen: recovering genetic material from the Linnaean era. Taxon 58:959–962Google Scholar
  140. 140.
    Ames M, Spooner DM (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257PubMedGoogle Scholar
  141. 141.
    Walters C, Reilley AA, Reeves PA, Baszczak J, Richards CM (2006) The utility of aged seeds in DNA banks. Seed Sci Res 16:169–178Google Scholar
  142. 142.
    Alves RJV, Machado MD (2007) Is classical taxonomy obsolete? Taxon 56:287–288Google Scholar
  143. 143.
    DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B Biol Sci 360:1905–1916Google Scholar
  144. 144.
    DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to rubinoff. Conserv Biol 20:1545–1547PubMedGoogle Scholar
  145. 145.
    Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438PubMedGoogle Scholar
  146. 146.
    Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415Google Scholar
  147. 147.
    Wheeler QD (2005) Losing the plot: DNA "barcodes" and taxonomy. Cladistics 21:405–407Google Scholar
  148. 148.
    Corney DPA, Clark JY, Tang HT, Wilkin P (2012) Automatic extraction of leaf characters from herbarium specimens. Taxon 61(1):231–244Google Scholar
  149. 149.
    Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923PubMedGoogle Scholar
  150. 150.
    Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942PubMedGoogle Scholar
  151. 151.
    Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539Google Scholar
  152. 152.
    Brautigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol 12:831–841PubMedGoogle Scholar
  153. 153.
    Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J (2012) Targeted enrichment strategies for next-generation plant biology. Am J Bot 99:291–311PubMedGoogle Scholar
  154. 154.
    Rodriguez-Fernandez JI, De Carvalho CJB, Pasquini C, De Lima KMG, Moura MO, Arizaga GGC (2011) Barcoding without DNA? Species identification using near infrared spectroscopy, Zootaxa, pp 46–54Google Scholar
  155. 155.
    Munck L, Jespersen BM, Rinnan A, Seefeldt HF, Engelsen MM, Norgaard L, Engelsen SB (2010) A physiochemical theory on the applicability of soft mathematical models-experimentally interpreted. J Chemometr 24:481–495Google Scholar
  156. 156.
    Cruickshank RH, Munck L (2011) It’s barcoding Jim, but not as we know it. Zootaxa 2933:55–56Google Scholar
  157. 157.
    Andres-Sanchez S, Rico E, Herrero A, Santos-Vicente M, Martinez-Ortega MM (2009) Combining traditional morphometrics and molecular markers in cryptic taxa: towards an updated integrative taxonomic treatment for Veronica subgenus Pentasepalae (Plantaginaceae sensu APG II) in the western Mediterranean. Bot J Linn Soc 159:68–87Google Scholar
  158. 158.
    Schlick-Steiner BC, Seifert B, Stauffer C, Christian E, Crozier RH, Steiner FM (2007) Without morphology, cryptic species stay in taxonomic crypsis following discovery. Trends Ecol Evol 22:391–392PubMedGoogle Scholar
  159. 159.
    Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc B Biol Sci 360:1935–1943Google Scholar
  160. 160.
    Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philos Trans R Soc B Biol Sci 360:1917–1924Google Scholar
  161. 161.
    Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371PubMedGoogle Scholar
  162. 162.
    Puillandre N, Bouchet P, Boisselier-Dubayle MC, Brisset J, Buge B, Castelin M, Chagnoux S, Christophe T, Corbari L, Lambourdiere J, Lozouet P, Marani G, Rivasseau A, Silva N, Terryn Y, Tillier S, Utge J, Samadi S (2012) New taxonomy and old collections: integrating DNA barcoding into the collection curation process. Mol Ecol Resour 12:396–402PubMedGoogle Scholar
  163. 163.
    Gemeinholzer B, Bachmann K (2005) Examining morphological and molecular diagnostic character states of Cichorium intybus L. (Asteraceae) and C-spinosum L. Plant Syst Evol 253:105–123Google Scholar
  164. 164.
    Bacon CD, McKenna MJ, Simmons MP, Wagner WL (2012) Evaluating multiple criteria for species delimitation: an empirical example using Hawaiian palms (Arecaceae: Pritchardia). BMC Evol Biol 12:23PubMedCentralPubMedGoogle Scholar
  165. 165.
    Barrett CF, Freudenstein JV (2011) An integrative approach to delimiting species in a rare but widespread mycoheterotrophic orchid. Mol Ecol 20:2771–2786PubMedGoogle Scholar
  166. 166.
    Koffi KG, Heuertz M, Doumenge C, Onana JM, Gavory F, Hardy OJ (2010) A combined analysis of morphological traits, chloroplast and nuclear DNA sequences within santiria trimera (Burseraceae) suggests several species following the biological species concept. Plant Ecol Evol 143:160–169Google Scholar
  167. 167.
    Ley AC, Hardy OJ (2010) Species delimitation in the Central African herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic DNA sequences. Mol Phylogenet Evol 57:859–867PubMedGoogle Scholar
  168. 168.
    Meudt HM, Lockhart PJ, Bryant D (2009) Species delimitation and phylogeny of a New Zealand plant species radiation. Bmc Evol Biol 9Google Scholar
  169. 169.
    Schmidt-Lebuhn AN (2007) Using amplified fragment length polymorphism (AFLP) to unravel species relationships and delimitations in Minthostachys (Labiatae). Bot J Linn Soc 153:9–19Google Scholar
  170. 170.
    Zeng YF, Liao WJ, Petit RJ, Zhang DY (2010) Exploring species limits in two closely related Chinese oaks. Plos One 5Google Scholar
  171. 171.
    Rieseberg LH, Troy TE, Baack EJ (2006) The nature of plant species. Nature 440:524–527PubMedCentralPubMedGoogle Scholar
  172. 172.
    de Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci USA 102:6600–6607PubMedGoogle Scholar
  173. 173.
    de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886PubMedGoogle Scholar
  174. 174.
    Sites JW, Marshall JC (2003) Delimiting species: a renaissance issue in systematic biology. Trends Ecol Evol 18(9):462–470Google Scholar
  175. 175.
    Wright S (1940) The statistical consequences of Mendelian heredity in relation to speciation. In: Huxley J (ed) The new systematics. Oxford University Press, London, pp 161–183Google Scholar
  176. 176.
    Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  177. 177.
    Dobzhansky T (1950) Mendelian populations and their evolution. Am Nat 84:401–418Google Scholar
  178. 178.
    Poulton EB (1904) What is a species? Proceedings of the Entomological Society of London 1903: lxxvii–cxvi.Google Scholar
  179. 179.
    Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press, New YorkGoogle Scholar
  180. 180.
    Sokal RR, Crovello TJ (1970) The biological species concept: a critical evaluation. Am Nat 104:107–123Google Scholar
  181. 181.
    Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239Google Scholar
  182. 182.
    Simpson GG (1951) The species concept. Evolution 5:285–298Google Scholar
  183. 183.
    Wiley EO (1978) The Evolutionary species concept reconsidered. Syst Zool 21:17–26Google Scholar
  184. 184.
    Cracraft J (1989) Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, pp 28–59Google Scholar
  185. 185.
    Rosen DE (1979) Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bull Am Mus Nat His 162:267–376Google Scholar
  186. 186.
    Donoghue MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172–181Google Scholar
  187. 187.
    Mishler BD (1985) The morphological, developmental, and phylogenetic basis of species concepts in bryophytes. Bryologist 88:207–214Google Scholar
  188. 188.
    Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In: Hoch PC, Stephenson AG (eds) Experimental and molecular approaches to plant biosystematics. Missouri Botanical Garden, St. Louis, pp 289–303Google Scholar
  189. 189.
    Mallet J (1995) A species definition for the modern synthesis. Trends Ecol Evol 10:294–299PubMedGoogle Scholar
  190. 190.
    Templeton AR (1998) Species and speciation: geography, population structure, ecology, and gene trees. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 32–43Google Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Germinal Rouhan
    • 1
  • Myriam Gaudeul
    • 1
  1. 1.Muséum national d’Histoire naturelle, UMR CNRS 7205 “Origine, Structure et Evolution de la Biodiversité”ParisFrance

Personalised recommendations