Skip to main content

Preparation and Application of Triple Helix Forming Oligonucleotides and Single Strand Oligonucleotide Donors for Gene Correction

  • Protocol
  • First Online:
Book cover Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

Strategies for site-specific modulation of genomic sequences in mammalian cells require two components. One must be capable of recognizing and activating a specific target sequence in vivo, driving that site into an exploitable repair pathway. Information is transferred to the site via participation in the pathway by the second component, a donor nucleic acid, resulting in a permanent change in the target sequence. We have developed biologically active triple helix forming oligonucleotides (TFOs) as site-specific gene targeting reagents. These TFOs, linked to DNA reactive compounds (such as a cross-linking agent), activate pathways that can engage informational donors. We have used the combination of a psoralen-TFO and single strand oligonucleotide donors to generate novel cell lines with directed sequence changes at the target site.

Here we describe the synthesis and purification of bioactive psoralen-linked TFOs, their co-introduction into mammalian cells with donor nucleic acids, and the identification of cells with sequence conversion of the target site. We have emphasized details in the synthesis and purification of the oligonucleotides that are essential for preparation of reagents with optimal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Felsenfeld G, Davies DR, Rich A (1957) Formation of a three stranded polynucleotide molecule. J Am Chem Soc 79:2023–2024

    Article  CAS  Google Scholar 

  2. Thuong NT, Helene C (1993) Sequence specific recognition and modification of double helical DNA by oligonucleotides. Angew Chem Int Ed Engl 32:666–690

    Article  Google Scholar 

  3. Sun JS, Garestier T, Helene C (1996) Oligonucleotide directed triple helix formation. Curr Opin Struct Biol 6:327–333

    Article  CAS  PubMed  Google Scholar 

  4. Takasugi M, Guendouz A, Chassignol M, Decout JL, Lhomme J, Thuong NT, Helene C (1991) Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A 88:5602–5606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Havre PA, Gunther EJ, Gasparro FP, Glazer PM (1993) Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A 90:7879–7883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Seidman MM, Glazer PM (2003) The potential for gene repair via triple helix formation. J Clin Invest 112:487–494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Campbell MA, Miller PS (2009) Transplatin-conjugated triplex-forming oligonucleotides form adducts with both strands of DNA. Bioconjug Chem 20:2222–2230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wang G, Seidman MM, Glazer PM (1996) Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 271:802–805

    Article  CAS  PubMed  Google Scholar 

  9. Lee JS, Woodsworth ML, Latimer LJ, Morgan AR (1984) Poly(pyrimidine).poly(purine) synthetic DNAs containing 5-methylcytosine form stable triplexes at neutral pH. Nucleic Acids Res 12:6603–6614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ono A, Ts’o PO, Kan L (1991) Triple helix formation of oligonucleotides containing 2′-O-methylpseudoisocytidine in substitution for 2′-deoxycytidine. J Am Chem Soc 113:4032–4033

    Article  CAS  Google Scholar 

  11. Shahid KA, Majumdar A, Alam R, Liu ST, Kuan JY, Sui X, Cuenoud B, Glazer PM, Miller PS, Seidman MM (2006) Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide. Biochemistry 45:1970–1978

    Article  CAS  PubMed  Google Scholar 

  12. Roberts RW, Crothers DM (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258:1463–1466

    Article  CAS  PubMed  Google Scholar 

  13. Escude C, Sun JS, Rougee M, Garestier T, Helene C (1992) Stable triple helices are formed upon binding of RNA oligonucleotides and their 2′-O-methyl derivatives to double-helical DNA. C R Acad Sci III 315:521–525

    CAS  PubMed  Google Scholar 

  14. Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8:2219–2222

    Article  CAS  PubMed  Google Scholar 

  15. Torigoe H, Obika S, Imanishi T (2000) Promotion of triplex formation by a fixed N-form sugar puckering: thermodynamic and kinetic studies. Nucleic Acids Symp Ser:241–242

    Google Scholar 

  16. Blommers MJ, Natt F, Jahnke W, Cuenoud B (1998) Dual recognition of double-stranded DNA by 2′-aminoethoxy-modified oligonucleotides: the solution structure of an intramolecular triplex obtained by NMR spectroscopy. Biochemistry 37:17714–17725

    Article  CAS  PubMed  Google Scholar 

  17. Puri N, Majumdar A, Cuenoud B, Miller PS, Seidman MM (2004) Importance of clustered 2′-O-(2-aminoethyl) residues for the gene targeting activity of triple helix-forming oligonucleotides. Biochemistry 43:1343–1351

    Article  CAS  PubMed  Google Scholar 

  18. Majumdar A, Khorlin A, Dyatkina N, Lin FL, Powell J, Liu J, Fei Z, Khripine Y, Watanabe KA, George J, Glazer PM, Seidman MM (1998) Targeted gene knockout mediated by triple helix forming oligonucleotides. Nat Genet 20:212–214

    Article  CAS  PubMed  Google Scholar 

  19. Puri N, Majumdar A, Cuenoud B, Natt F, Martin P, Boyd A, Miller PS, Seidman MM (2002) Minimum number of 2′-O-(2-aminoethyl) residues required for gene knockout activity by triple helix forming oligonucleotides. Biochemistry 41:7716–7724

    Article  CAS  PubMed  Google Scholar 

  20. Majumdar A, Muniandy PA, Liu J, Liu JL, Liu ST, Cuenoud B, Seidman MM (2008) Targeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide. J Biol Chem 283:11244–11252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu J, Majumdar A, Liu J, Thompson LH, Seidman MM (2010) Sequence conversion by single strand oligonucleotide donors via non-homologous end joining in mammalian cells. J Biol Chem 285:23198–23207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported entirely by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alam, M.R., Thazhathveetil, A.K., Li, H., Seidman, M.M. (2014). Preparation and Application of Triple Helix Forming Oligonucleotides and Single Strand Oligonucleotide Donors for Gene Correction. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics