Skip to main content

Small Fragment Homologous Replacement (SFHR): Sequence-Specific Modification of Genomic DNA in Eukaryotic Cells by Small DNA Fragments

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

The sequence-specific correction of a mutated gene (e.g., point mutation) by the Small Fragment Homologous Replacement (SFHR) method is a highly attractive approach for gene therapy. Small DNA fragments (SDFs) were used in SFHR to modify endogenous genomic DNA in both human and murine cells. The advantage of this gene targeting approach is to maintain the physiologic expression pattern of targeted genes without altering the regulatory sequences (e.g., promoter, enhancer), but the application of this technique requires the knowledge of the sequence to be targeted.

In our recent study, an optimized SFHR protocol was used to replace the eGFP mutant sequence in SV-40-transformed mouse embryonic fibroblast (MEF-SV40), with the wild-type eGFP sequence. Nevertheless in the past, SFHR has been used to correct several mutant genes, each related to a specific genetic disease (e.g., spinal muscular atrophy, cystic fibrosis, severe combined immune deficiency). Several parameters can be modified to optimize the gene modification efficiency, as described in our recent study.

In this chapter we describe the main guidelines that should be followed in SFHR application, in order to increase technique efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capecchi MR (1994) Targeted gene replacement. Sci Am 270:52–59

    Article  CAS  PubMed  Google Scholar 

  2. Sullenger B (2003) Targeted genetic repair: an emerging approach to genetic therapy. J Clin Invest 112:310–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Horie K, Kuroiwa A, Ikawa M, Okabe M, Kondoh G, Matsuda Y, Takeda J (2001) Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc Natl Acad Sci U S A 98:9191–9196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ivics Z, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  PubMed  Google Scholar 

  5. Izsvak Z (2003) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther 9(2):147–156

    Article  Google Scholar 

  6. Yoon K, Cole-Strauss A, Kmiec EB (1996) Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA-DNA oligonucleotide. Proc Natl Acad Sci U S A 93:2017–2076

    Google Scholar 

  7. Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555–558

    Article  CAS  PubMed  Google Scholar 

  8. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3(10):737–747

    Article  CAS  PubMed  Google Scholar 

  9. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651

    Article  CAS  PubMed  Google Scholar 

  10. Gruenert DC (1998) Gene correction with small DNA fragments. Curr Res Mol Therapeut 1:607–613

    CAS  Google Scholar 

  11. Gruenert DC (1999) Opportunities and challenges in targeting genes for therapy. Gene Ther 6:1347–1348

    Article  CAS  PubMed  Google Scholar 

  12. Yáñez RJ, Porter AC (1998) Therapeutic gene targeting. Gene Ther 5(2):149–159

    Article  PubMed  Google Scholar 

  13. Goncz KK, Gruenert DC (2000) Site-directed alteration of genomic DNA by small-fragment homologous replacement. Methods Mol Biol 133:85–99

    CAS  PubMed  Google Scholar 

  14. Davis BR, Gruenert DC (2002) Application of SFHR to gene therapy of monogenic disorders. Gene Ther 9:691–694

    Article  PubMed  Google Scholar 

  15. Kunzelmann K, Legendre JY, Knoell DL, Escobar LC, Xu Z, Gruenert DC (1996) Gene targeting of CFTR DNA in CF epithelial cells. Gene Ther 3:859–867

    CAS  PubMed  Google Scholar 

  16. Colosimo A, Goncz KK, Novelli G, Dallapiccola B, Gruenert DC (2001) Targeted correction of a defective selectable marker gene in human epithelial cells by small DNA fragments. Mol Ther 3:178–185

    Article  CAS  PubMed  Google Scholar 

  17. Sangiuolo F, Bruscia E, Serafino A, Nardone AM, Bonifazi E, Lais M, Gruenert DC, Novelli G (2002) In vitro correction of cystic fibrosis epithelial cell lines by small fragment homologous replacement (SFHR) technique. BMC Med Genet 3:8

    Article  PubMed Central  PubMed  Google Scholar 

  18. Maurisse R, Cheung J, Widdicombe J, Gruenert DC (2006) Modification of the pig CFTR gene mediated by small fragment homologous replacement. Ann N Y Acad Sci 1082:120–123

    Article  CAS  PubMed  Google Scholar 

  19. Sangiuolo F, Scaldaferri ML, Filareto A, Spitalieri P, Guerra L et al (2008) Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR). Front Biosci 1:2989–2999

    Article  Google Scholar 

  20. Quigley A, Lynch GS, Steeper K, Kornberg AJ, Gregorevic P, Austin L, Byrne E (2001) In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement. Hum Gene Ther 12:629–642

    Article  PubMed  Google Scholar 

  21. Todaro M, Quigley A, Kita M, Chin J, Lowes K, Kornberg AJ, Cook MJ, Kapsa R (2007) Effective detection of corrected dystrophin loci in mdx mouse myogenic precursors. Hum Mutat 28:816–823

    Article  CAS  PubMed  Google Scholar 

  22. Sangiuolo F, Filareto A, Spitalieri P, Scaldaferri ML, Mango R et al (2005) In vitro restoration of functional SMN protein in human trophoblast cells affected by spinal muscular atrophy by small fragment homologous replacement. Hum Gene Ther 16:869–880

    Article  CAS  PubMed  Google Scholar 

  23. Spitalieri P, Cortese G, Pietropolli A, Filareto A, Dolci S et al (2009) Identification of multipotent cytotrophoblast cells from human first trimester chorionic villi. Cloning Stem Cells 11:535–546

    Article  CAS  PubMed  Google Scholar 

  24. Zayed H, McIvor RS, Wiest DL, Blazar BR (2006) In vitro functional correction of the mutation responsible for murine severe combined immune deficiency by small fragment homologous replacement. Hum Gene Ther 17:158–166

    Article  CAS  PubMed  Google Scholar 

  25. Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, Gruenert DC (2006) Small fragment homologous replacement-mediated modification of genomic beta-globin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 16:213–224

    Article  CAS  PubMed  Google Scholar 

  26. Bedayat B, Abdolmohamadi A, Ye L, Maurisse R, Parsi H et al (2009) Sequence-specific correction of genomic hypoxanthine-guanine phosphoribosyl transferase mutations in lymphoblasts by small fragment homologous replacement. Oligonucleotides 20:7–16

    Article  Google Scholar 

  27. Hu Y, Parekh-Olmedo H, Drury M, Skogen M, Kmiec EB (2005) Reaction parameters of targeted gene repair in mammalian cells. Mol Biotechnol 29:197–210

    Article  CAS  PubMed  Google Scholar 

  28. Engstrom JU, Kmiec EB (2008) DNA replication, cell cycle progression and the targeted gene repair reaction. Cell Cycle 7:1402–1414

    Article  CAS  PubMed  Google Scholar 

  29. Brachman EE, Kmiec EB (2005) Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks. DNA Repair 4:445–457

    Article  CAS  PubMed  Google Scholar 

  30. Gruenert DC, Bruscia E, Novelli G, Colosimo A, Dallapiccola B et al (2003) Sequence-specific modification of genomic DNA by small DNA fragments. J Clin Invest 112:637–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Luchetti A, Filareto A, Sanchez M, Ferraguti G, Lucarelli M, Novelli G, Sangiuolo F, Malgieri A (2012) Small fragment homologous replacement: evaluation of factors influencing modification efficiency in an eukaryotic assay system. PLoS One 7(2):e30851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Maurisse R, Fichou Y, De Semir D, Cheung J, Ferec C, Gruenert DC (2006) Gel purification of genomic DNA removes contaminating small DNA fragments interfering with PCR analysis of SFHR. Oligonucleotides 16:375–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondazione Cenci Bolognetti and by Fondazione Roma.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Luchetti, A., Malgieri, A., Sangiuolo, F. (2014). Small Fragment Homologous Replacement (SFHR): Sequence-Specific Modification of Genomic DNA in Eukaryotic Cells by Small DNA Fragments. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics