Skip to main content

Method for Retinal Gene Repair in Neonatal Mouse

  • Protocol
  • First Online:
  • 6382 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

Gene correction at the site of the mutation in the chromosome is the absolute way to really cure a genetic disease. The oligonucleotide (ODN)-mediated gene repair technology uses an ODN perfectly complementary to the genomic sequence except for a mismatch at the base that is mutated. The endogenous repair machinery of the targeted cell then mediates substitution of the desired base in the gene, resulting in a completely normal sequence. Theoretically, it avoids potential gene silencing or random integration associated with common viral gene augmentation approaches and allows an intact regulation of expression of the therapeutic protein. The eye is a particularly attractive target for gene repair because of its unique features (small organ, easily accessible, low diffusion into systemic circulation). Moreover therapeutic effects on visual impairment could be obtained with modest levels of repair. This chapter describes in details the optimized method to target active ODNs to the nuclei of photoreceptors in neonatal mouse using (1) an electric current application at the eye surface (saline transpalpebral iontophoresis), (2) combined with an intravitreous injection of ODNs, as well as the experimental methods for (3) the dissection of adult neural retinas, (4) their immuno-labelling, and (5) flat-mounting for direct observation of photoreceptor survival, a relevant criteria of treatment outcomes for retinal degeneration.

Marilyn Dernigoghossian and Arthur Krigel contributed equally to this manuscript

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wadhwa S, Paliwal R et al (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15(23):2724–2750

    Article  CAS  PubMed  Google Scholar 

  2. Eljarrat-Binstock E, Pe'er J et al (2010) New techniques for drug delivery to the posterior eye segment. Pharm Res 27(4):530–543

    Article  CAS  PubMed  Google Scholar 

  3. Andrieu-Soler C, Bejjani RA et al (2006) Ocular gene therapy: a review of nonviral strategies. Mol Vis 12:1334–1347

    CAS  PubMed  Google Scholar 

  4. Bejjani RA, Andrieu C et al (2007) Electrically assisted ocular gene therapy. Surv Ophthalmol 52(2):196–208

    Article  PubMed  Google Scholar 

  5. Jensen NM, Dalsgaard T et al (2011) An update on targeted gene repair in mammalian cells: methods and mechanisms. J Biomed Sci 18:10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yang N, Singh S et al (2011) Targeted TFO delivery to hepatic stellate cells. J Control Release 155(2):326–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sangiuolo F, Scaldaferri ML et al (2008) Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR). Front Biosci 13:2989–2999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ferrara L, Kmiec EB (2004) Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cells by inducing DNA damage and activating homologous recombination. Nucleic Acids Res 32(17):5239–5248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Overlack N, Goldmann T et al (2012) Gene repair of an usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination. Invest Ophthalmol Vis Sci 53(7):4140–4146

    Article  CAS  PubMed  Google Scholar 

  10. Johnen S, Izsvak Z et al (2012) Sleeping beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Invest Ophthalmol Vis Sci. doi:10.1167/iovs.12-9951

    PubMed  Google Scholar 

  11. Yoon K, Cole-Strauss A et al (1996) Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc Natl Acad Sci U S A 93(5):2071–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rando TA, Disatnik MH et al (2000) Rescue of dystrophin expression in mdx mouse muscle by RNA/DNA oligonucleotides. Proc Natl Acad Sci U S A 97(10):5363–5368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bartlett RJ, Stockinger S et al (2000) In vivo targeted repair of a point mutation in the canine dystrophin gene by a chimeric RNA/DNA oligonucleotide. Nat Biotechnol 18(6):615–622

    Article  CAS  PubMed  Google Scholar 

  14. Alexeev V, Igoucheva O et al (2000) Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA-DNA oligonucleotide. Nat Biotechnol 18(1):43–47

    Article  CAS  PubMed  Google Scholar 

  15. Kren BT, Parashar B et al (1999) Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of crigler-najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci U S A 96(18):10349–10354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kren BT, Bandyopadhyay P et al (1998) In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotides. Nat Med 4(3):285–290

    Article  CAS  PubMed  Google Scholar 

  17. Tagalakis AD, Graham IR et al (2001) Gene correction of the apolipoprotein (Apo) E2 phenotype to wild-type ApoE3 by in situ chimeraplasty. J Biol Chem 276(16):13226–13230

    Article  CAS  PubMed  Google Scholar 

  18. Andrieu-Soler C, Casas M et al (2005) Stable transmission of targeted gene modification using single-stranded oligonucleotides with flanking LNAs. Nucleic Acids Res 33(12):3733–3742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ciavatta VT, Padove SA et al (2005) Mouse retina has oligonucleotide-induced gene repair activity. Invest Ophthalmol Vis Sci 46(7):2291–2299

    Article  PubMed  Google Scholar 

  20. Andrieu-Soler C, Doat M et al (2006) Enhanced oligonucleotide delivery to mouse retinal cells using iontophoresis. Mol Vis 12:1098–1107

    CAS  PubMed  Google Scholar 

  21. Andrieu-Soler C, Halhal M et al (2007) Single-stranded oligonucleotide-mediated in vivo gene repair in the rd1 retina. Mol Vis 13:692–706

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

video 1: Iontophoresis (MPG 51,388 kb)

video 2: Dissection (MPG 223,196 kb)

video 3: flat mount (MPG 96,102 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dernigoghossian, M., Krigel, A., Behar-Cohen, F., Andrieu-Soler, C. (2014). Method for Retinal Gene Repair in Neonatal Mouse. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics