Skip to main content

An Unbiased Method for Detection of Genome-Wide Off-Target Effects in Cell Lines Treated with Zinc Finger Nucleases

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

We describe a method for detecting and validating genomic aberrations arising from cell lines exposed to zinc finger nucleases (ZFNs), an important reagent used for targeted genome modifications. This method makes use of cloned cell lines, an approach that adds power when testing variables that may affect gene correction efficiency and evaluating potential side effects on a genome-wide scale. After cell treatment, the genomic DNA isolation method, as described, is ideal for high-resolution array comparative genomic hybridization (aCGH) and quantitative PCR. Guidelines for aCGH analysis and calling significant copy number variations (CNVs) for validation by qPCR are also discussed. Using this method, we describe a novel ZFN-associated chromosome 4 copy number variation (CNV) attributable to a predicted ZFN off-target cleavage site found within the CNV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabriel R, Lombardo A, Arens A et al (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29(9):816–823

    Article  CAS  PubMed  Google Scholar 

  2. Feuk L, Cardon AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97

    Article  CAS  PubMed  Google Scholar 

  3. Haraksingh RR, Abyzov A, Gerstein M et al (2011) Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS One 6(11):e27589. doi:10.1371/journal.pone.0027859

    Article  Google Scholar 

  4. Urnov FD, Rebar EJ, Holmes MC et al (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  5. Tchinda J, Lee C (2006) Detecting copy number variation in the human genome using comparative genomic hybridization. Biotechniques 41(4):385–392

    Article  CAS  PubMed  Google Scholar 

  6. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  7. Pinto D, Darvishi K, Shi X et al (2011) Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol 29(6):512–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Tommasi S, Mangia A, Iannelli G et al (2010) Gene copy number variation in male breast cancer by aCGH. Anal Cell Pathol (Amst) 33:113–119

    CAS  Google Scholar 

  9. Bendavid C, Rochard L, Dubourg C et al (2009) Array-CGH indicates a high prevalence of genomic rearrangements in holoprosencephaly: an update map of candidate loci. Hum Mutat 30(8):1175–1182

    Article  CAS  PubMed  Google Scholar 

  10. Hanemaaijer NM, Sikkema-Raddatz B, van der Vries G et al (2012) Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics. Eur J Hum Genet 20:161–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Paulson V, Chandler G, Rakheja D et al (2011) High-resolution array CGH identifies common mechanisms that drive embryonal rahbdomyosarcoma pathogenesis. Genes Chromosomes Cancer 50:397–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Matthew Porteus, University of Stanford, for supplying GFP-293T cells and GFP-ZFN plasmids SP202A, SP202B and PC264 donor substrate. We also thank Susanna Lewis for comments and revisions to the chapter. This work was supported by the NIH Nanomedicine Center for Nucleoprotein Machines PN2 EY018244.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindsay, C.R., Roth, D.B. (2014). An Unbiased Method for Detection of Genome-Wide Off-Target Effects in Cell Lines Treated with Zinc Finger Nucleases. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics