Skip to main content

A Southern Blot Protocol to Detect Chimeric Nuclease-Mediated Gene Repair

  • Protocol
  • First Online:
Gene Correction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1114))

Abstract

Gene targeting by homologous recombination at chromosomal endogenous loci has traditionally been considered a low-efficiency process. However, the effectiveness of such so-called genome surgery or genome editing has recently been drastically improved through technical developments, chiefly the use of designer nucleases like zinc-finger nucleases (ZFNs), meganucleases, transcription activator-like effector nucleases (TALENs) and CRISPR/Cas nucleases. These enzymes are custom designed to recognize long target sites and introduce double-strand breaks (DSBs) at specific target loci in the genome, which in turn mediate significant improvements in the frequency of homologous recombination. Here, we describe a Southern blot-based assay that allows detection of gene repair and estimation of repair frequencies in a cell population, useful in cases where the targeted modification itself cannot be detected by restriction digest. This is achieved through detection of a silent restriction site introduced alongside the desired mutation, in our particular example using integration-deficient lentiviral vectors (IDLVs) coding for ZFNs and a suitable DNA repair template.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yáñez RJ, Porter ACG (1998) Therapeutic gene targeting. Gene Ther 5:149–159

    Article  PubMed  Google Scholar 

  2. Carroll D (2004) Using nucleases to stimulate homologous recombination. Methods Mol Biol 262:195–207

    CAS  PubMed  Google Scholar 

  3. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  CAS  PubMed  Google Scholar 

  4. Urnov FD et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  5. Li H et al (2011) In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature 475:217–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arnould S et al (2011) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel: PEDS 24:27–31

    Article  CAS  PubMed  Google Scholar 

  7. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23:644–650

    Article  CAS  PubMed  Google Scholar 

  9. Wu J, Kandavelou K, Chandrasegaran S (2007) Custom-designed zinc finger nucleases: what is next? Cell Mol Life Sci: CMLS 64:2933–2944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cornu TI, Cathomen T (2010) Quantification of zinc finger nuclease-associated toxicity. Methods Mol Biol 649:237–245

    Article  CAS  PubMed  Google Scholar 

  11. Doyon Y et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

  12. Miller JC et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    Article  CAS  PubMed  Google Scholar 

  13. Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2011) Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 405:630–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Sollu C et al (2010) Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res 38:8269–8276

    Article  PubMed Central  PubMed  Google Scholar 

  15. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  16. Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18:93–101

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Taghian DG, Nickoloff JA (1997) Chromosomal double-strand breaks induce gene conversion at high frequency in mammalian cells. Mol Cell Biol 17:6386–6393

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256

    Article  CAS  PubMed  Google Scholar 

  20. te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A 89:5128–5132

    Article  Google Scholar 

  21. Yáñez-Muñoz RJ et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12:348–353

    Article  PubMed  Google Scholar 

  22. Wanisch K, Yáñez-Muñoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 17:1316–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Giry-Laterriere M, Verhoeyen E, Salmon P (2011) Lentiviral vectors. Methods Mol Biol 737:183–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the 7th EU Framework Programme (PERSIST project, grant agreement no. 222878) and the Primary Immunodeficiency Association.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rocca, C.J., Abdul-Razak, H.H., Holmes, M.C., Gregory, P.D., Yáñez-Muñoz, R.J. (2014). A Southern Blot Protocol to Detect Chimeric Nuclease-Mediated Gene Repair. In: Storici, F. (eds) Gene Correction. Methods in Molecular Biology, vol 1114. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-761-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-761-7_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-760-0

  • Online ISBN: 978-1-62703-761-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics