Skip to main content

Enzyme Kinetics, Inhibition, and Regioselectivity of Aldehyde Oxidase

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

The aldehyde oxidase (AO) enzyme family plays an increasing role in drug development. However, a number of compounds that are AO substrates have failed in the clinic because the clearance or toxicity is underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. While AOs normally make non-reactive metabolites such as lactams, the metabolic products often have much lower solubility that can lead to renal failure. While an endogenous substrate for the oxidation reaction is not known, electron acceptors for the reductive part of the reaction include oxygen and nitrites. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion, and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. To date, no clinically important drug–drug interactions (DDIs) have been observed for AOs. However, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pearson J, Dahal UP, Rock D, Peng C-C, Schenk JO, Joswig-Jones C, Jones JP (2011) The kinetic mechanism for cytochrome P450 metabolism of Type II binding compounds: evidence supporting direct reduction. Arch Biochem Biophys 511(1–2):69–79. doi:10.1016/j.abb.2011.04.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dahal UP, Joswig-Jones C, Jones JP (2012) Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogues by cytochrome P450 3A4. J Med Chem 55(1):280–290. doi:10.1021/jm201207h

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran T-D (2010) Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 53(24):8441–8460. doi:10.1021/jm100888d

    Article  CAS  PubMed  Google Scholar 

  4. Kaye B, Rance DJ, Waring L (1985) Oxidative metabolism of carbazeran in vitro by liver cytosol of baboon and man. Xenobiotica 15(3):237–242. doi:10.3109/00498258509045354

    Article  CAS  PubMed  Google Scholar 

  5. Sharma R, Strelevitz TJ, Gao H, Clark AJ, Schildknegt K, Obach RS, Ripp SL, Spracklin DK, Tremaine LM, Vaz ADN (2012) Deuterium isotope effects on drug pharmacokinetics. I. System-dependent effects of specific deuteration with aldehyde oxidase cleared drugs. Drug Metab Dispos 40(3):625–634. doi:10.1124/dmd.111.042770

    Article  CAS  PubMed  Google Scholar 

  6. Yoshihara S, Tatsumi K (1985) Guinea pig liver aldehyde oxidase as a sulfoxide reductase: its purification and characterization. Arch Biochem Biophys 242(1):213–224

    Article  CAS  PubMed  Google Scholar 

  7. Kitamura S, Tatsumi K (1984) Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase. Biochem Biophys Res Commun 121(3):749–754

    Article  CAS  PubMed  Google Scholar 

  8. Brandaenge S, Lindblom L (1979) The enzyme “aldehyde oxidase” is an iminium oxidase. Reaction with nicotine delta 1′(5′) iminium ion. Biochem Biophys Res Commun 91:991–996

    Article  CAS  Google Scholar 

  9. Garattini E, Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 43(3):374–386. doi:10.3109/03602532.2011.560606

    Article  CAS  PubMed  Google Scholar 

  10. Garattini E, Terao M (2012) The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 8(4):487–503. doi:10.1517/17425255.2012.663352

    Article  CAS  PubMed  Google Scholar 

  11. Mendel RR (2007) Biology of the molybdenum cofactor. J Exp Bot 58(9):2289–2296

    Article  CAS  PubMed  Google Scholar 

  12. Schumann S, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Leimkuhler S (2009) Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1. PLoS One 4(4):e5348

    Article  PubMed Central  PubMed  Google Scholar 

  13. Alfaro JF, Joswig-Jones CA, Ouyang W, Nichols J, Crouch GJ, Jones JP (2009) Purification and mechanism of human aldehyde oxidase expressed in Escherichia coli. Drug Metab Dispos 37(12):2393–2398. doi:10.1124/dmd.109.029520

    Article  CAS  PubMed  Google Scholar 

  14. Mahro M, Coelho C, Trincão J, Rodrigues D, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Romão MJ, Leimkühler S (2011) Characterization and crystallization of mouse aldehyde oxidase 3: from mouse liver to Escherichia coli heterologous protein expression. Drug Metab Dispos 39(10):1939–1945. doi:10.1124/dmd.111.040873

    Article  CAS  PubMed  Google Scholar 

  15. Hartmann T, Terao M, Garattini E, Teutloff C, Alfaro JF, Jones JP, Leimkühler S (2012) The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 40(5):856–864. doi:10.1124/dmd.111.043828

    Article  CAS  PubMed  Google Scholar 

  16. Kitamura S, Sugihara K, Ohta S (2006) Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet 21(2):83–98

    Article  CAS  PubMed  Google Scholar 

  17. Ruenitz PC, Bai X (1995) Acidic metabolites of tamoxifen. Aspects of formation and fate in the female rat. Drug Metab Dispos 23(9):993–998

    CAS  PubMed  Google Scholar 

  18. McDaniel HG, Podgainy H, Bressler R (1969) The metabolism of tolbutamide in rat liver. J Pharmacol Exp Ther 167(1):91–97

    CAS  PubMed  Google Scholar 

  19. Dick RA, Kanne DB, Casida JE (2005) Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Chem Res Toxicol 18(2):317–323. doi:10.1021/tx049737i

    Article  CAS  PubMed  Google Scholar 

  20. Dick RA, Kanne DB, Casida JE (2006) Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem Res Toxicol 19(1):38–43. doi:10.1021/tx050230x

    Article  CAS  PubMed  Google Scholar 

  21. Sugihara K, Kitamura S, Tatsumi K (1996) Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Drug Metab Dispos 24(2):199–202

    CAS  PubMed  Google Scholar 

  22. Kawashima K, Hosoi K, Naruke T, Shiba T, Kitamura M, Watabe T (1999) Aldehyde oxidase-dependent marked species difference in hepatic metabolism of the sedative-hypnotic, zaleplon, between monkeys and rats. Drug Metab Dispos 27(3):422–428

    CAS  PubMed  Google Scholar 

  23. Lake BG, Ball SE, Kao J, Renwick AB, Price RJ, Scatina JA (2002) Metabolism of zaleplon by human liver: evidence for involvement of aldehyde oxidase. Xenobiotica 32(10):835–847. doi:10.1080/00498250210158915

    Article  CAS  PubMed  Google Scholar 

  24. Kuroda T, Namba K, Torimaru T, Kawashima K, Hayashi M (2000) Species differences in oral bioavailability of methotrexate between rats and monkeys. Biol Pharm Bull 23(3):334–338

    Article  CAS  PubMed  Google Scholar 

  25. Klecker RW, Cysyk RL, Collins JM (2006) Zebularine metabolism by aldehyde oxidase in hepatic cytosol from humans, monkeys, dogs, rats, and mice: influence of sex and inhibitors. Bioorg Med Chem 14(1):62–66. doi:10.1016/j.bmc.2005.07.053

    Article  CAS  PubMed  Google Scholar 

  26. Rashidi M-R, Beedham C, Smith JS, Davaran S (2007) In vitro study of 6-mercaptopurine oxidation catalysed by aldehyde oxidase and xanthine oxidase. Drug Metab Pharmacokinet 22(4):299–306

    Article  CAS  PubMed  Google Scholar 

  27. Akabane T, Tanaka K, Irie M, Terashita S, Teramura T (2011) Case report of extensive metabolism by aldehyde oxidase in humans: pharmacokinetics and metabolite profile of FK3453 in rats, dogs, and humans. Xenobiotica 41(5):372–384. doi:10.3109/00498254.2010.549970

    Article  CAS  PubMed  Google Scholar 

  28. Sanoh S, Nozaki K, Murai H, Terashita S, Teramura T, Ohta S (2012) Prediction of human metabolism of FK3453 by aldehyde oxidase using chimeric mice transplanted with human or rat hepatocytes. Drug Metab Dispos 40(1):76–82. doi:10.1124/dmd.111.041954

    Article  CAS  PubMed  Google Scholar 

  29. Diamond S, Boer J, Maduskuie T, Falahatpisheh N, Li Y, Yeleswaram S (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38:1277–1285. doi:10.1124/dmd.110.032375

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Liu H-H, Weller P, Zheng M, Tao W, Wang J, Liao G, Monshouwer M, Peltz G (2010) In silico and in vitro pharmacogenetics: aldehyde oxidase rapidly metabolizes a p38 kinase inhibitor. Pharmacogenomics J 11:15–24. doi:10.1038/tpj.2010.8

    Article  PubMed  Google Scholar 

  31. Li H, Kundu TK, Zweier JL (2009) Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem 284(49):33850–33858. doi:10.1074/jbc.M109.019125

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283(26):17855–17863. doi:10.1074/jbc.M801785200

    Article  CAS  PubMed  Google Scholar 

  33. Lymar SV, Hurst JK (1996) Carbon dioxide: physiological catalyst for peroxynitrite-mediated cellular damage or cellular protectant? Chem Res Toxicol 9(5):845–850. doi:10.1021/tx960046z

    Article  CAS  PubMed  Google Scholar 

  34. Goldstein S, Czapski G (1995) The reaction of NO. with O2.- and HO2.: a pulse radiolysis study. Free Radic Biol Med 19(4):505–510

    Article  CAS  PubMed  Google Scholar 

  35. Czapski G, Goldstein S (1995) The role of the reactions of .NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med 19(6):785–794

    Article  CAS  PubMed  Google Scholar 

  36. Kundu TK, Velayutham M, Zweier JL (2012) Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51(13):2930–2939. doi:10.1021/bi3000879

    Article  CAS  PubMed  Google Scholar 

  37. Kundu TK, Hille R, Velayutham M, Zweier JL (2007) Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys 460(1):113–121. doi:10.1016/j.abb.2006.12.032

    Article  CAS  PubMed  Google Scholar 

  38. Terao M, Kurosaki M, Marini M, Vanoni MA, Saltini G, Bonetto V, Bastone A, Federico C, Saccone S, Fanelli R, Salmona M, Garattini E (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276(49):46347–46363. doi:10.1074/jbc.M105744200

    Article  CAS  PubMed  Google Scholar 

  39. Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498. doi:10.1074/jbc.M408734200

    Article  CAS  PubMed  Google Scholar 

  40. Terao M, Kurosaki M, Demontis S, Zanotta S, Garattini E (1998) Isolation and characterization of the human aldehyde oxidase gene: conservation of intron/exon boundaries with the xanthine oxidoreductase gene indicates a common origin. Biochem J 332(Pt 2):383–393

    CAS  PubMed  Google Scholar 

  41. Kurosaki M, Demontis S, Barzago MM, Garattini E, Terao M (1999) Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochem J 341(Pt 1):71–80

    Article  CAS  PubMed  Google Scholar 

  42. Terao M, Kurosaki M, Barzago MM, Varasano E, Boldetti A, Bastone A, Fratelli M, Garattini E (2006) Avian and canine aldehyde oxidases - novel insights into the biology and evolution of molybdo-flavoenzymes. J Biol Chem 281(28):19748–19761

    Article  CAS  PubMed  Google Scholar 

  43. Stanulović M, Chaykin S (1971) Aldehyde oxidase: catalysis of the oxidation of N 1 -methylnicotinamide and pyridoxal. Arch Biochem Biophys 145(1):27–34

    Article  PubMed  Google Scholar 

  44. Ambroziak W, Izaguirre G, Pietruszko R (1999) Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem 274(47):33366–33373

    Article  CAS  PubMed  Google Scholar 

  45. Terao M, Kurosaki M, Barzago MM, Fratelli M, Bagnati R, Bastone A, Giudice C, Scanziani E, Mancuso A, Tiveron C, Garattini E (2009) Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 29(2):357–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Beedham C, Critchley DJ, Rance DJ (1995) Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon. Arch Biochem Biophys 319(2):481–490

    Article  CAS  PubMed  Google Scholar 

  47. Obach RS, Huynh P, Allen MC, Beedham C (2004) Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol 44(1):7–19

    Article  CAS  PubMed  Google Scholar 

  48. Torres RA, Korzekwa KR, McMasters DR, Fandozzi CM, Jones JP (2007) Use of density functional calculations to predict the regioselectivity of drugs and molecules metabolized by aldehyde oxidase. J Med Chem 50(19):4642–4647

    Article  CAS  PubMed  Google Scholar 

  49. Barr JT, Jones JP (2012) Evidence for substrate dependent inhibition profiles for human liver aldehyde oxidase. Drug Metab Dispos. doi:10.1124/dmd.112.048546

    PubMed  Google Scholar 

  50. Barr J, Jones J (2011) Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions. Drug Metab Dispos 39(12):2381–2386. doi:10.1124/dmd.111.041806

    Article  CAS  PubMed  Google Scholar 

  51. Vandenbrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL (2011) Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition. Drug Metab Dispos 40:47–53. doi:10.1124/dmd.111.041210

    Article  PubMed  Google Scholar 

  52. Kumar V, Wahlstrom JL, Rock DA, Warren CJ, Gorman LA, Tracy TS (2006) CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 34(12):1966–1975

    Article  CAS  PubMed  Google Scholar 

  53. Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257(3):1354–1359

    CAS  PubMed  Google Scholar 

  54. Mccormack JJ, Allen BA, Hodnett CN (1978) Oxidation of quinazoline and quinoxaline by xanthine oxidase and aldehyde oxidase. J Heterocycl Chem 15(8):1249–1254. doi:10.1002/jhet.5570150802

    Article  CAS  Google Scholar 

  55. Dick RA, Kanne DB, Casida JE (2007) Nitroso-imidacloprid irreversibly inhibits rabbit aldehyde oxidase. Chem Res Toxicol 20(12):1942–1946. doi:10.1021/tx700265r

    Article  CAS  PubMed  Google Scholar 

  56. Johnson C, Stubley-Beedham C, Stell JG (1985) Hydralazine: a potent inhibitor of aldehyde oxidase activity in vitro and in vivo. Biochem Pharmacol 34(24):4251–4256

    Article  CAS  PubMed  Google Scholar 

  57. Strelevitz TJ, Orozco CC, Obach RS (2012) Hydralazine as a selective probe inactivator of aldehyde oxidase in human hepatocytes: estimation of the contribution of aldehyde oxidase to metabolic clearance. Drug Metab Dispos 40(7):1441–1448. doi:10.1124/dmd.112.045195

    Article  CAS  PubMed  Google Scholar 

  58. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141(4):513–524

    Article  CAS  PubMed  Google Scholar 

  59. Clarke SE, Harrell AW, Chenery RJ (1995) Role of aldehyde oxidase in the in vitro conversion of famciclovir to penciclovir in human liver. Drug Metab Dispos 23(2):251–254

    CAS  PubMed  Google Scholar 

  60. Hutzler JM, Yang Y-S, Albaugh D, Fullenwider CL, Schmenk J, Fisher MB (2012) Characterization of aldehyde oxidase enzyme activity in cryopreserved human hepatocytes. Drug Metab Dispos 40(2):267–275. doi:10.1124/dmd.111.042861

    Article  CAS  PubMed  Google Scholar 

  61. Korzekwa KR, Jones JP (1993) Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics 3:1–18

    Article  CAS  PubMed  Google Scholar 

  62. Dalvie D, Sun H, Xiang C, Hu Q, Jiang Y, Kang P (2012) Effect of structural variation on aldehyde oxidase-catalyzed oxidation of zoniporide. Drug Metab Dispos 40(8):1575–1587. doi:10.1124/dmd.112.045823

    Article  CAS  PubMed  Google Scholar 

  63. Zientek M, Jiang Y, Youdim K, Obach RS (2010) In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase. Drug Metab Dispos 38(8):1322–1327. doi:10.1124/dmd.110.033555

    Article  CAS  PubMed  Google Scholar 

  64. Rashidi MR, Smith JA, Clarke SE, Beedham C (1997) In vitro oxidation of famciclovir and 6-deoxypenciclovir by aldehyde oxidase from human, guinea pig, rabbit, and rat liver. Drug Metab Dispos 25(7):805–813

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barr, J.T., Choughule, K., Jones, J.P. (2014). Enzyme Kinetics, Inhibition, and Regioselectivity of Aldehyde Oxidase. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics