Skip to main content

Case Study 6. Transporter Case Studies: In Vitro Solutions for Translatable Outcomes

  • Protocol
  • First Online:
Enzyme Kinetics in Drug Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

  • 5276 Accesses

Abstract

Assessing the interactions of a new drug candidate with transporters, either as a substrate or as an inhibitor, is no simple matter. There are many clinically relevant transporters, as many as nine to be evaluated for an FDA submission and up to eleven for the EMA as of 2013. Additionally, it is likely that if a compound is a substrate or inhibitor of one transporter, it will be so for other transporters as well. There are practically no specific substrates or inhibitors, presumably because the specificities of drug transporters are so broad and overlapping, and even fewer clinically relevant probes that can be used to evaluate transporter function in humans. In the case of some transporters, it is advisable to evaluate an NCE with more than one test system and/or more than one probe substrate in order to convince oneself (and regulatory authorities) that a clinical drug interaction study is not warranted. Finally, each test system has its own unique set of advantages and disadvantages. One has to really appreciate the nuances of the available tools (test systems, probe substrates, etc.) to select the best tools for the job and design the optimal in vitro experiment. In this chapter, several examples are used to illustrate the successful interpretation of in vitro data for both efflux and uptake transporters. Some data presented in this chapter is unpublished at the time of compilation of this book. It has been incorporated in this chapter to provide a sense of complexities in transporter kinetics to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giacomini KM, Sugiyama Y (2005) In: Brunton L et al (eds). Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw‐Hill, New York, pp 41–70

    Google Scholar 

  2. US Food and Drug Administration (2012) Draft guidance for industry: drug interaction studies: study design, data analysis, implications for dosing and labeling recommendations

    Google Scholar 

  3. European Medicines Agency (2013) Guideline on the investigation of drug interactions

    Google Scholar 

  4. Lappin G et al (2010) Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci 40(2):125–131

    Article  CAS  PubMed  Google Scholar 

  5. Yasui-Furukori N et al (2005) Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther 77(1):17–23

    Article  CAS  PubMed  Google Scholar 

  6. Dresser GK, Kim RB, Bailey DG (2005) Effect of grapefruit juice volume on the reduction of fexofenadine bioavailability: possible role of organic anion transporting polypeptides. Clin Pharmacol Ther 77(3):170–177

    Article  CAS  PubMed  Google Scholar 

  7. Ming X, Knight BM, Thakker DR (2011) Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters. Mol Pharm 8(5):1677–1686

    Article  CAS  PubMed  Google Scholar 

  8. Li J et al (2012) The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems. Drug Metab Dispos 40(11):2102–2108

    Article  CAS  PubMed  Google Scholar 

  9. Rautio J et al (2006) In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos 34(5):786–792

    Article  CAS  PubMed  Google Scholar 

  10. Enokizono J et al (2008) Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos 36(6):995–1002

    Article  CAS  PubMed  Google Scholar 

  11. Doran A et al (2005) The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 33(1):165–174

    Article  CAS  PubMed  Google Scholar 

  12. Mercer SL, Coop A (2011) Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem 11(9):1157–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chan LN (2008) Opioid analgesics and the gastrointestinal tract. Pract Gastroenterol 64:37–50

    Google Scholar 

  14. Zaki NM, Artursson P, Bergström CAS (2010) A modified physiological BCS for prediction of intestinal absorption in drug discovery. Mol Pharm 7(5):1478–1487

    Article  CAS  PubMed  Google Scholar 

  15. Hidalgo IJ (2001) Assessing the absorption of new pharmaceuticals. Curr Top Med Chem 1(5):385–401

    Article  CAS  PubMed  Google Scholar 

  16. Wang Q et al (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 288(2):349–359

    Article  CAS  PubMed  Google Scholar 

  17. Li J et al (2011) Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs. Drug Metab Dispos 39(7):1196–1202

    Article  CAS  PubMed  Google Scholar 

  18. Matsson P et al (2009) Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res 26(8):1816–1831

    Article  CAS  PubMed  Google Scholar 

  19. Huang L et al (2005) ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistant protein. Drug Metab Dispos 34(5):738–742

    Article  Google Scholar 

  20. Graham GG et al (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50(2):81–98

    Article  CAS  PubMed  Google Scholar 

  21. Kimura N et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic. Drug Metab Pharmacokinet 20(5):379–386

    Article  CAS  PubMed  Google Scholar 

  22. Giacomini KM et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9(3):215–236

    Article  CAS  PubMed  Google Scholar 

  23. Balimane PV et al (2008) P-gp inhibition potential in cell-based models: which “calculation” method is the most accurate? AAPS J 10(4):577–586

    Article  CAS  PubMed  Google Scholar 

  24. Tachibana T et al (2010) Model analysis of the concentration-dependant permeability of P-gp substrates. Pharm Res 27(3):442–446

    Article  CAS  PubMed  Google Scholar 

  25. Etravirine (package insert) (2008) Titusville, NJ: Janssen Pharmaceutical Inc

    Google Scholar 

  26. Kakuda TN et al (2009) Assessment of the steady-state pharmacokinetic interaction between etravirine administered as two different formulations and tenofovir disoproxil fumarate in healthy volunteers. HIV Med 10(3):173–181

    Article  CAS  PubMed  Google Scholar 

  27. Agarwal S, Arya V, Zhang L (2012) Review of P-gp inhibition data in recently approved new drug applications: utility of the proposed (I1)/IC50 and (I2)/IC50 criteria in the P-gp decision tree. J Clin Pharmacol. doi:10.1177/0091270011436344

    Google Scholar 

  28. Kenworthy KE et al (1999) CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 48:716–727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Miyagawa M et al (2009) The eighth and ninth transmembrane domains in organic anion transporting polypeptide 1B1 affect the transport kinetics of estrone-3-sulfate and estradiol-17-d-glucuronide. J Pharmacol Exp Ther 329(2):551–557

    Article  CAS  PubMed  Google Scholar 

  30. Kalliokoski A, Niemi M (2009) Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 158(3):693–705

    Article  CAS  PubMed  Google Scholar 

  31. Niemi M (2007) Role of OATP transporters in the disposition of drugs. Pharmacogenomics 8(7):787–802

    Article  CAS  PubMed  Google Scholar 

  32. Shitara Y et al (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311(1):228–236

    Article  CAS  PubMed  Google Scholar 

  33. Spence JD et al (1995) Pharmacokinetics of the combination of fluvastatin and gemfibrozil. Am J Cardiol 76(2):80A–83A

    Article  CAS  PubMed  Google Scholar 

  34. Simonson SG et al (2004) Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther 76(6):167–177

    Article  CAS  PubMed  Google Scholar 

  35. Ozdemir O et al (2000) A case with severe rhabdomyolysis and renal failure associated with cerivastatin-gemfibrozil combination therapy—a case report. Angiology 51(8):695–697

    CAS  PubMed  Google Scholar 

  36. Wang JS et al (2002) Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 30(12):1352–1356

    Article  PubMed  Google Scholar 

  37. Noe J et al (2007) Substrate-Dependent Drug-Drug Interactions between Gemfibrozil, Fluvastatin and Other Organic Anion-Transporting Peptide (OATP) Substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35(8):1308–1314

    Article  CAS  PubMed  Google Scholar 

  38. Tamai I et al (2001) Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver specific OATP-C. Pharm Res 18(9):1262–1269

    Article  CAS  PubMed  Google Scholar 

  39. Gorboulev V et al (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16(7):871–881

    Article  CAS  PubMed  Google Scholar 

  40. Motohashi H et al (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    CAS  PubMed  Google Scholar 

  41. Tsuda M et al (2009) Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther 329:185–191

    Article  CAS  PubMed  Google Scholar 

  42. Sambol NC et al (1995) Kidney function and age are both predictors of pharmacokinetics of metformin. J Clin Pharmacol 35(11):1094–1102

    Article  CAS  PubMed  Google Scholar 

  43. Somogyi A et al (1987) Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23(5):545–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bachmakov I et al (2008) Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on OATPs and OCT1. Diabetes 57:1463–1469

    Article  CAS  PubMed  Google Scholar 

  45. Dresser MJ et al (2002) Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm Res 19(8):1244–1247

    Article  CAS  PubMed  Google Scholar 

  46. Lazaruk KD, Wright SH (1990) MPP+ is transported by the TEA1-H1 exchanger of renal brush-border membrane vesicles. Am J Physiol 258(3 pt 2):F597–F605

    CAS  PubMed  Google Scholar 

  47. Sokol PP et al (1987) The neurotoxins 1-methyl-4-phenylpyridinium and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine are substrates for the organic cation transporter in renal brush border membrane vesicles. J Pharmacol Exp Ther 242(1):152–157

    CAS  PubMed  Google Scholar 

  48. Moseley RH, Zuggar LJ (1996) The cationic neurotoxin, 1-methyl-4-phenylpyridinium (MPP1), is a substrate for the canalicular organic cation:H1 exchanger. Gastroenterology 110(1):A1270

    Google Scholar 

  49. Pritchard JB, Miller DS (1993) Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev 73(4):765–796

    CAS  PubMed  Google Scholar 

  50. Ullrich KJ (1994) Specificity of transporters for ‘organic anions’ and ‘organic cations’ in the kidney. Biochim Biophys Acta 1197(1):45–62

    Article  CAS  PubMed  Google Scholar 

  51. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bhoopathy, S., Bode, C., Naageshwaran, V., Weiskircher-Hildebrandt, E.A., Hidalgo, I.J. (2014). Case Study 6. Transporter Case Studies: In Vitro Solutions for Translatable Outcomes. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics