Skip to main content

Sources of Interindividual Variability

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in other individuals. A major source of this variability in drug response is drug metabolism, where differences in pre-systemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, C max, and/or C min) following administration of a fixed dose.

Interindividual differences in drug biotransformation have been studied extensively. It is well recognized that both intrinsic (such as genetics, age, sex, and disease states) and extrinsic (such as diet, chemical exposures from the environment, and even sunlight) factors play a significant role. For the family of cytochrome P450 enzymes, the most critical of the drug metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, up- and down-regulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less reliably predictable and time-dependent manner. Understanding the mechanistic basis for drug disposition and response variability is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that brings with it true improvements in health outcomes in the therapeutic treatment of disease.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Guengerich FP (2007) Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J Biochem Mol Toxicol 21(4):163–168

    CAS  PubMed  Google Scholar 

  2. Yang X, Zhang B, Molony C et al (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res 20(8):1020–1036. doi:10.1101/gr.103341.109

    CAS  PubMed  Google Scholar 

  3. von Richter O, Burk O, Fromm MF et al (2004) Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 75(3):172–183. doi:10.1016/j.clpt.2003.10.008

    Google Scholar 

  4. Daly AK (2012) Genetic polymorphisms affecting drug metabolism: recent advances and clinical aspects. Adv Pharmacol 63:137–167. doi:10.1016/B978-0-12-398339-8.00004-5

    CAS  PubMed  Google Scholar 

  5. Sim SC, Kacevska M, Ingelman-Sundberg M (2013) Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J 13(1):1–11. doi:10.1038/tpj.2012.45

    CAS  PubMed  Google Scholar 

  6. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141. doi:10.1016/j.pharmthera.2012.12.007

    CAS  PubMed  Google Scholar 

  7. Crawford DC, Nickerson DA (2005) Definition and clinical importance of haplotypes. Annu Rev Med 56:303–320. doi:10.1146/annurev.med.56.082103.104540

    CAS  PubMed  Google Scholar 

  8. Nebert DW, Zhang G, Vesell ES (2008) From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 40(2):187–224. doi:10.1080/03602530801952864

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gaedigk A, Blum M, Gaedigk R et al (1991) Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am J Hum Genet 48(5):943–950

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17(1):27–41

    CAS  PubMed  Google Scholar 

  11. de Morais SM, Wilkinson GR, Blaisdell J et al (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269(22):15419–15422

    PubMed  Google Scholar 

  12. Sachse C, Brockmoller J, Bauer S et al (1997) Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 60(2):284–295

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Soyama A, Saito Y, Komamura K et al (2002) Five novel single nucleotide polymorphisms in the CYP2C8 gene, one of which induces a frame-shift. Drug Metab Pharmacokinet 17(4):374–377

    CAS  PubMed  Google Scholar 

  14. De Morais SM, Wilkinson GR, Blaisdell J et al (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46(4):594–598

    PubMed  Google Scholar 

  15. Ferguson RJ, De Morais SM, Benhamou S et al (1998) A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 284(1):356–361

    CAS  PubMed  Google Scholar 

  16. Kuehl P, Zhang J, Lin Y et al (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391. doi:10.1038/86882

    CAS  PubMed  Google Scholar 

  17. Lin YS, Dowling AL, Quigley SD et al (2002) Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 62(1):162–172

    CAS  PubMed  Google Scholar 

  18. Schirmer M, Toliat MR, Haberl M et al (2006) Genetic signature consistent with selection against the CYP3A4*1B allele in non-African populations. Pharmacogenet Genomics 16(1):59–71

    CAS  PubMed  Google Scholar 

  19. Zanger UM, Klein K (2013) Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): advances on polymorphisms, mechanisms, and clinical relevance. Front Genet 4:24. doi:10.3389/fgene.2013.00024

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Gaedigk A, Jaime LK, Bertino JS Jr et al (2010) Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants. Front Pharmacol 1:121. doi:10.3389/fphar.2010.00121

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Smit P, van Schaik RH, van der Werf M et al (2005) A common polymorphism in the CYP3A7 gene is associated with a nearly 50% reduction in serum dehydroepiandrosterone sulfate levels. J Clin Endocrinol Metab 90(9):5313–5316. doi:10.1210/jc.2005-0307

    CAS  PubMed  Google Scholar 

  22. Goodarzi MO, Xu N, Azziz R (2008) Association of CYP3A7*1C and serum dehydroepiandrosterone sulfate levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 93(7):2909–2912. doi:10.1210/jc.2008-0403

    CAS  PubMed  Google Scholar 

  23. Chai X, Zeng S, Xie W (2013) Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab Toxicol 9(3):253–266. doi:10.1517/17425255.2013.754010

    CAS  PubMed  Google Scholar 

  24. Waxman DJ, Holloway MG (2009) Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 76(2):215–228. doi:10.1124/mol.109.056705

    CAS  PubMed  Google Scholar 

  25. Nakajima M, Yokoi T, Mizutani M et al (1999) Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem 125(4):803–808

    CAS  PubMed  Google Scholar 

  26. Zanger UM, Fischer J, Raimundo S et al (2001) Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 11(7):573–585

    CAS  PubMed  Google Scholar 

  27. Rebbeck TR, Jaffe JM, Walker AH et al (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90(16):1225–1229

    CAS  PubMed  Google Scholar 

  28. Bosma PJ, Chowdhury JR, Bakker C et al (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333(18):1171–1175. doi:10.1056/NEJM199511023331802

    CAS  PubMed  Google Scholar 

  29. Raijmakers MT, Jansen PL, Steegers EA et al (2000) Association of human liver bilirubin UDP-glucuronyltransferase activity with a polymorphism in the promoter region of the UGT1A1 gene. J Hepatol 33(3):348–351

    CAS  PubMed  Google Scholar 

  30. Ritter JK, Kessler FK, Thompson MT et al (1999) Expression and inducibility of the human bilirubin UDP-glucuronosyltransferase UGT1A1 in liver and cultured primary hepatocytes: evidence for both genetic and environmental influences. Hepatology 30(2):476–484. doi:10.1002/hep.510300205

    CAS  PubMed  Google Scholar 

  31. Lankisch TO, Vogel A, Eilermann S et al (2005) Identification and characterization of a functional TATA box polymorphism of the UDP glucuronosyltransferase 1A7 gene. Mol Pharmacol 67(5):1732–1739. doi:10.1124/mol.104.007146

    CAS  PubMed  Google Scholar 

  32. Dalen P, Dahl ML, Bernal Ruiz ML et al (1998) 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 63(4):444–452. doi:10.1016/S0009-9236(98)90040-6

    CAS  PubMed  Google Scholar 

  33. Gasche Y, Daali Y, Fathi M et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831. doi:10.1056/NEJMoa041888

    CAS  PubMed  Google Scholar 

  34. Gaedigk A, Fuhr U, Johnson C et al (2010) CYP2D7-2D6 hybrid tandems: identification of novel CYP2D6 duplication arrangements and implications for phenotype prediction. Pharmacogenomics 11(1):43–53. doi:10.2217/pgs.09.133

    CAS  PubMed  Google Scholar 

  35. Chida M, Yokoi T, Fukui T et al (1999) Detection of three genetic polymorphisms in the 5′-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res 90(9):899–902

    CAS  PubMed  Google Scholar 

  36. Sachse C, Brockmoller J, Bauer S et al (1999) Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47(4):445–449

    CAS  PubMed Central  PubMed  Google Scholar 

  37. McCarver DG, Byun R, Hines RN et al (1998) A genetic polymorphism in the regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. Toxicol Appl Pharmacol 152(1):276–281. doi:10.1006/taap.1998.8532

    CAS  PubMed  Google Scholar 

  38. Sim SC, Edwards RJ, Boobis AR et al (2005) CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7*1C allele. Pharmacogenet Genomics 15(9):625–631

    CAS  PubMed  Google Scholar 

  39. Sim SC, Risinger C, Dahl ML et al (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79(1):103–113. doi:10.1016/j.clpt.2005.10.002

    CAS  PubMed  Google Scholar 

  40. Daly AK (2010) Pharmacogenetics and human genetic polymorphisms. Biochem J 429(3):435–449. doi:10.1042/BJ20100522

    CAS  PubMed  Google Scholar 

  41. Rodriguez-Antona C, Sayi JG, Gustafsson LL et al (2005) Phenotype-genotype variability in the human CYP3A locus as assessed by the probe drug quinine and analyses of variant CYP3A4 alleles. Biochem Biophys Res Commun 338(1):299–305. doi:10.1016/j.bbrc.2005.09.020

    CAS  PubMed  Google Scholar 

  42. Amirimani B, Ning B, Deitz AC et al (2003) Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 42(4):299–305. doi:10.1002/em.10199

    CAS  PubMed  Google Scholar 

  43. Lamba JK, Lin YS, Thummel K et al (2002) Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12(2):121–132

    CAS  PubMed  Google Scholar 

  44. Westlind A, Lofberg L, Tindberg N et al (1999) Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 259(1):201–205. doi:10.1006/bbrc.1999.0752

    CAS  PubMed  Google Scholar 

  45. Tai HL, Fessing MY, Bonten EJ et al (1999) Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. Pharmacogenetics 9(5):641–650

    CAS  PubMed  Google Scholar 

  46. Krynetski EY, Tai HL, Yates CR et al (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6(4):279–290

    CAS  PubMed  Google Scholar 

  47. Johansson I, Oscarson M, Yue QY et al (1994) Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 46(3):452–459

    CAS  PubMed  Google Scholar 

  48. Lamba JK (2008) Pharmacogenetics of the constitutive androstane receptor. Pharmacogenomics 9(1):71–83. doi:10.2217/14622416.9.1.71

    CAS  PubMed  Google Scholar 

  49. Okey AB, Boutros PC, Harper PA (2005) Polymorphisms of human nuclear receptors that control expression of drug-metabolizing enzymes. Pharmacogenet Genomics 15(6):371–379

    CAS  PubMed  Google Scholar 

  50. Zhang B, Xie W, Krasowski MD (2008) PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics 9(11):1695–1709. doi:10.2217/14622416.9.11.1695

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Cornelis MC, Monda KL, Yu K et al (2011) Genome-wide meta-analysis identifies regions on 7p21 (AHR) and 15q24 (CYP1A2) as determinants of habitual caffeine consumption. PLoS Genet 7(4):e1002033. doi:10.1371/journal.pgen.1002033

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Josse AR, Da Costa LA, Campos H et al (2012) Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr 96(3):665–671. doi:10.3945/ajcn.112.038794

    PubMed  Google Scholar 

  53. Ikeda S, Kurose K, Ozawa S et al (2003) Twenty-six novel single nucleotide polymorphisms and their frequencies of the NR1I3 (CAR) gene in a Japanese population. Drug Metab Pharmacokinet 18(6):413–418

    CAS  PubMed  Google Scholar 

  54. Ikeda S, Kurose K, Jinno H et al (2005) Functional analysis of four naturally occurring variants of human constitutive androstane receptor. Mol Genet Metab 86(1–2):314–319. doi:10.1016/j.ymgme.2005.05.011

    CAS  PubMed  Google Scholar 

  55. Chang TK, Bandiera SM, Chen J (2003) Constitutive androstane receptor and pregnane X receptor gene expression in human liver: interindividual variability and correlation with CYP2B6 mRNA levels. Drug Metabol Dispos 31(1):7–10

    CAS  Google Scholar 

  56. Lamba V, Lamba J, Yasuda K et al (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 307(3):906–922. doi:10.1124/jpet.103.054866

    CAS  PubMed  Google Scholar 

  57. Wyen C, Hendra H, Siccardi M et al (2011) Cytochrome P450 2B6 (CYP2B6) and constitutive androstane receptor (CAR) polymorphisms are associated with early discontinuation of efavirenz-containing regimens. J Antimicrob Chemother 66(9):2092–2098. doi:10.1093/jac/dkr272

    CAS  PubMed  Google Scholar 

  58. Lamba J, Lamba V, Schuetz E (2005) Genetic variants of PXR (NR1I2) and CAR (NR1I3) and their implications in drug metabolism and pharmacogenetics. Curr Drug Metab 6(4):369–383

    CAS  PubMed  Google Scholar 

  59. Jinno H, Tanaka-Kagawa T, Hanioka N et al (2004) Identification of novel alternative splice variants of human constitutive androstane receptor and characterization of their expression in the liver. Mol Pharmacol 65(3):496–502. doi:10.1124/mol.65.3.496

    CAS  PubMed  Google Scholar 

  60. Auerbach SS, Stoner MA, Su S et al (2005) Retinoid X receptor-alpha-dependent transactivation by a naturally occurring structural variant of human constitutive androstane receptor (NR1I3). Mol Pharmacol 68(5):1239–1253. doi:10.1124/mol.105.013417

    CAS  PubMed  Google Scholar 

  61. DeKeyser JG, Laurenzana EM, Peterson EC et al (2011) Selective phthalate activation of naturally occurring human constitutive androstane receptor splice variants and the pregnane X receptor. Toxicol Sci 120(2):381–391. doi:10.1093/toxsci/kfq394

    CAS  PubMed  Google Scholar 

  62. Svard J, Spiers JP, Mulcahy F et al (2010) Nuclear receptor-mediated induction of CYP450 by antiretrovirals: functional consequences of NR1I2 (PXR) polymorphisms and differential prevalence in whites and sub-Saharan Africans. J Acquir Immune Defic Syndr 55(5):536–549. doi:10.1097/QAI.0b013e3181f52f0c

    PubMed  Google Scholar 

  63. Chung JY, Cho JY, Lim HS et al (2011) Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin. Drug Metabol Dispos 39(1):92–97. doi:10.1124/dmd.110.035246

    CAS  Google Scholar 

  64. Siccardi M, D’Avolio A, Baietto L et al (2008) Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C → T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis 47(9):1222–1225. doi:10.1086/592304

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Uno Y, Sakamoto Y, Yoshida K et al (2003) Characterization of six base pair deletion in the putative HNF1-binding site of human PXR promoter. J Hum Genet 48(11):594–597. doi:10.1007/s10038-003-0076-5

    CAS  PubMed  Google Scholar 

  66. Lin YS, Yasuda K, Assem M et al (2009) The major human pregnane X receptor (PXR) splice variant, PXR.2, exhibits significantly diminished ligand-activated transcriptional regulation. Drug Metabol Dispos 37(6):1295–1304. doi:10.1124/dmd.108.025213

    CAS  Google Scholar 

  67. Dickmann LJ, Rettie AE, Kneller MB et al (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol Pharmacol 60(2):382–387

    CAS  PubMed  Google Scholar 

  68. Farres J, Wang X, Takahashi K et al (1994) Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J Biol Chem 269(19):13854–13860

    CAS  PubMed  Google Scholar 

  69. Kitagawa K, Kawamoto T, Kunugita N et al (2000) Aldehyde dehydrogenase (ALDH) 2 associates with oxidation of methoxyacetaldehyde; in vitro analysis with liver subcellular fraction derived from human and Aldh2 gene targeting mouse. FEBS Lett 476(3):306–311

    CAS  PubMed  Google Scholar 

  70. Callaghan JT, Bergstrom RF, Ptak LR et al (1999) Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet 37(3):177–193

    CAS  PubMed  Google Scholar 

  71. Kassahun K, Mattiuz E, Nyhart E Jr et al (1997) Disposition and biotransformation of the antipsychotic agent olanzapine in humans. Drug Metabol Dispos 25(1):81–93

    CAS  Google Scholar 

  72. Haslemo T, Loryan I, Ueda N et al (2012) UGT1A4*3 encodes significantly increased glucuronidation of olanzapine in patients on maintenance treatment and in recombinant systems. Clin Pharmacol Ther 92(2):221–227. doi:10.1038/clpt.2012.46

    CAS  PubMed  Google Scholar 

  73. Lalovic B, Kharasch E, Hoffer C et al (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 79(5):461–479. doi:10.1016/j.clpt.2006.01.009

    CAS  PubMed  Google Scholar 

  74. Samer CF, Daali Y, Wagner M et al (2010) The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol 160(4):907–918. doi:10.1111/j.1476-5381.2010.00673.x

    CAS  PubMed  Google Scholar 

  75. Kurose K, Sugiyama E, Saito Y (2012) Population differences in major functional polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern Asians and Europeans: implications in the clinical trials for novel drug development. Drug Metab Pharmacokinet 27(1):9–54

    CAS  PubMed  Google Scholar 

  76. McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8(3):371–382. doi:10.1517/17425255.2012.657626

    CAS  PubMed  Google Scholar 

  77. Solus JF, Arietta BJ, Harris JR et al (2004) Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population. Pharmacogenomics 5(7):895–931. doi:10.1517/14622416.5.7.895

    CAS  PubMed  Google Scholar 

  78. Zanger UM, Turpeinen M, Klein K et al (2008) Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 392(6):1093–1108. doi:10.1007/s00216-008-2291-6

    CAS  PubMed  Google Scholar 

  79. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286(5439):487–491

    CAS  PubMed  Google Scholar 

  80. Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429(6990):464–468. doi:10.1038/nature02626

    CAS  PubMed  Google Scholar 

  81. Silas JH, McGourty JC, Lennard MS et al (1985) Polymorphic metabolism of metoprolol: clinical studies. Eur J Clin Pharmacol 28(Suppl):85–88

    CAS  PubMed  Google Scholar 

  82. Sauer JM, Ring BJ, Witcher JW (2005) Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 44(6):571–590

    CAS  PubMed  Google Scholar 

  83. Yue QY, Zhong ZH, Tybring G et al (1998) Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 64(4):384–390. doi:10.1016/S0009-9236(98)90069-8

    CAS  PubMed  Google Scholar 

  84. Ismail R, Teh LK (2006) The relevance of CYP2D6 genetic polymorphism on chronic metoprolol therapy in cardiovascular patients. J Clin Pharm Ther 31(1):99–109. doi:10.1111/j.1365-2710.2006.00699.x

    CAS  PubMed  Google Scholar 

  85. Sauer JM, Ponsler GD, Mattiuz EL et al (2003) Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metabol Dispos 31(1):98–107

    CAS  Google Scholar 

  86. Hicks JK, Swen JJ, Thorn CF et al (2013) Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Tricyclic Antidepressants. Clin Pharmacol Ther 93:402–408. doi:10.1038/clpt.2013.2

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhou SF (2009) Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet 48(12):761–804. doi:10.2165/11318070-000000000-00000

    CAS  PubMed  Google Scholar 

  88. Wernicke JF, Kratochvil CJ (2002) Safety profile of atomoxetine in the treatment of children and adolescents with ADHD. J Clin Psychiatry 63(Suppl 12):50–55

    CAS  PubMed  Google Scholar 

  89. Crews KR, Gaedigk A, Dunnenberger HM et al (2012) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91(2):321–326. doi:10.1038/clpt.2011.287

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Kirchheiner J, Schmidt H, Tzvetkov M et al (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265. doi:10.1038/sj.tpj.6500406

    CAS  PubMed  Google Scholar 

  91. Brynne N, Dalen P, Alvan G et al (1998) Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamic of tolterodine. Clin Pharmacol Ther 63(5):529–539. doi:10.1016/S0009-9236(98)90104-7

    CAS  PubMed  Google Scholar 

  92. Eap CB, Bondolfi G, Zullino D et al (2001) Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 21(3):330–334

    CAS  PubMed  Google Scholar 

  93. Lohmann PL, Rao ML, Ludwig M et al (2001) Influence of CYP2D6 genotype and medication on the sparteine metabolic ratio of psychiatric patients. Eur J Clin Pharmacol 57(4):289–295

    CAS  PubMed  Google Scholar 

  94. Sindrup SH, Brosen K, Gram LF et al (1992) The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 51(3):278–287

    CAS  PubMed  Google Scholar 

  95. Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52(4):349–355

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Furuta T, Shirai N, Sugimoto M et al (2005) Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies. Drug Metab Pharmacokinet 20(3):153–167

    CAS  PubMed  Google Scholar 

  97. Furuta T, Ohashi K, Kamata T et al (1998) Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 129(12):1027–1030

    CAS  PubMed  Google Scholar 

  98. Wan J, Xia H, He N et al (1996) The elimination of diazepam in Chinese subjects is dependent on the mephenytoin oxidation phenotype. Br J Clin Pharmacol 42(4):471–474

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Kirchheiner J, Nickchen K, Bauer M et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9(5):442–473. doi:10.1038/sj.mp.4001494

    CAS  PubMed  Google Scholar 

  100. Kerb R, Fux R, Morike K et al (2009) Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 9(12):760–774. doi:10.1016/S1473-3099(09)70320-2

    CAS  PubMed  Google Scholar 

  101. Mega JL, Close SL, Wiviott SD et al (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360(4):354–362. doi:10.1056/NEJMoa0809171

    CAS  PubMed  Google Scholar 

  102. Shuldiner AR, O’Connell JR, Bliden KP et al (2009) Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 302(8):849–857. doi:10.1001/jama.2009.1232

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Sanford JC, Guo Y, Sadee W et al (2013) Regulatory polymorphisms in CYP2C19 affecting hepatic expression. Drug Metabol Drug Interact 28(1):23–30. doi:10.1515/dmdi-2012-0038

    PubMed Central  PubMed  Google Scholar 

  104. Li Y, Tang HL, Hu YF et al (2012) The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. JTH 10(2):199–206. doi:10.1111/j.1538-7836.2011.04570.x

    CAS  PubMed  Google Scholar 

  105. Scott SA, Sangkuhl K, Stein CM et al (2013) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for cytochrome P450-2C19 (CYP2C19) genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther 94:317–323. doi:10.1038/clpt.2013.105

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Scordo MG, Pengo V, Spina E et al (2002) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 72(6):702–710. doi:10.1067/mcp.2002.129321

    CAS  PubMed  Google Scholar 

  107. Klein TE, Altman RB, Eriksson N et al (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764. doi:10.1056/NEJMoa0809329

    CAS  PubMed  Google Scholar 

  108. Veenstra DL, Blough DK, Higashi MK et al (2005) CYP2C9 haplotype structure in European American warfarin patients and association with clinical outcomes. Clin Pharmacol Ther 77(5):353–364. doi:10.1016/j.clpt.2005.01.019

    CAS  PubMed  Google Scholar 

  109. Higashi MK, Veenstra DL, Kondo LM et al (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287(13):1690–1698

    CAS  PubMed  Google Scholar 

  110. Aynacioglu AS, Brockmoller J, Bauer S et al (1999) Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48(3):409–415

    CAS  PubMed  Google Scholar 

  111. Odani A, Hashimoto Y, Otsuki Y et al (1997) Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 62(3):287–292. doi:10.1016/S0009-9236(97)90031-X

    CAS  PubMed  Google Scholar 

  112. Shon JH, Yoon YR, Kim KA et al (2002) Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 12(2):111–119

    CAS  PubMed  Google Scholar 

  113. Sullivan-Klose TH, Ghanayem BI, Bell DA et al (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6(4):341–349

    CAS  PubMed  Google Scholar 

  114. Kidd RS, Straughn AB, Meyer MC et al (1999) Pharmacokinetics of chlorpheniramine, phenytoin, glipizide and nifedipine in an individual homozygous for the CYP2C9*3 allele. Pharmacogenetics 9(1):71–80

    CAS  PubMed  Google Scholar 

  115. Kirchheiner J, Roots I, Goldammer M et al (2005) Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet 44(12):1209–1225

    CAS  PubMed  Google Scholar 

  116. McCrea JB, Cribb A, Rushmore T et al (1999) Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 65(3):348–352. doi:10.1016/S0009-9236(99)70114-1

    CAS  PubMed  Google Scholar 

  117. Sekino K, Kubota T, Okada Y et al (2003) Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur J Clin Pharmacol 59(8–9):589–592. doi:10.1007/s00228-003-0664-5

    CAS  PubMed  Google Scholar 

  118. Daly AK (2010) Genome-wide association studies in pharmacogenomics. Nat Rev Genet 11(4):241–246. doi:10.1038/nrg2751

    CAS  PubMed  Google Scholar 

  119. Haufroid V, Mourad M, Van Kerckhove V et al (2004) The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics 14(3):147–154

    CAS  PubMed  Google Scholar 

  120. Hesselink DA, van Schaik RH, van der Heiden IP et al (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 74(3):245–254. doi:10.1016/S0009-9236(03)00168-1

    CAS  PubMed  Google Scholar 

  121. MacPhee IA, Fredericks S, Tai T et al (2004) The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 4(6):914–919. doi:10.1111/j.1600-6143.2004.00435.x

    CAS  PubMed  Google Scholar 

  122. Thervet E, Anglicheau D, King B et al (2003) Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 76(8):1233–1235. doi:10.1097/01.TP.0000090753.99170.89

    CAS  PubMed  Google Scholar 

  123. Macphee IA (2010) Use of pharmacogenetics to optimize immunosuppressive therapy. Ther Drug Monit 32(3):261–264. doi:10.1097/FTD.0b013e3181dca995

    CAS  PubMed  Google Scholar 

  124. Zheng S, Tasnif Y, Hebert MF et al (2012) Measurement and compartmental modeling of the effect of CYP3A5 gene variation on systemic and intrarenal tacrolimus disposition. Clin Pharmacol Ther 92(6):737–745. doi:10.1038/clpt.2012.175

    CAS  PubMed  Google Scholar 

  125. Dennison JB, Jones DR, Renbarger JL et al (2007) Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther 321(2):553–563. doi:10.1124/jpet.106.118471

    CAS  PubMed  Google Scholar 

  126. Dennison JB, Mohutsky MA, Barbuch RJ et al (2008) Apparent high CYP3A5 expression is required for significant metabolism of vincristine by human cryopreserved hepatocytes. J Pharmacol Exp Ther 327(1):248–257. doi:10.1124/jpet.108.139998

    CAS  PubMed  Google Scholar 

  127. Egbelakin A, Ferguson MJ, MacGill EA et al (2011) Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 56(3):361–367. doi:10.1002/pbc.22845

    PubMed Central  PubMed  Google Scholar 

  128. Floyd MD, Gervasini G, Masica AL et al (2003) Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 13(10):595–606. doi:10.1097/01.fpc.0000054118.14659.48

    CAS  PubMed  Google Scholar 

  129. Goh BC, Lee SC, Wang LZ et al (2002) Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 20(17):3683–3690

    CAS  PubMed  Google Scholar 

  130. Shih PS, Huang JD (2002) Pharmacokinetics of midazolam and 1′-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metabol Dispos 30(12):1491–1496

    CAS  Google Scholar 

  131. Wong M, Balleine RL, Collins M et al (2004) CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 75(6):529–538. doi:10.1016/j.clpt.2004.02.005

    CAS  PubMed  Google Scholar 

  132. Yu KS, Cho JY, Jang IJ et al (2004) Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther 76(2):104–112. doi:10.1016/j.clpt.2004.03.009

    CAS  PubMed  Google Scholar 

  133. Zhang W, Chang YZ, Kan QC et al (2010) CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol 66(1):61–66. doi:10.1007/s00228-009-0726-4

    CAS  PubMed  Google Scholar 

  134. Miura M, Satoh S, Kagaya H et al (2011) Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics 12(7):977–984. doi:10.2217/pgs.11.33

    CAS  PubMed  Google Scholar 

  135. Wang D, Guo Y, Wrighton SA et al (2011) Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 11(4):274–286. doi:10.1038/tpj.2010.28

    PubMed Central  PubMed  Google Scholar 

  136. Elens L, Bouamar R, Hesselink DA et al (2011) A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 57(11):1574–1583. doi:10.1373/clinchem.2011.165613

    CAS  PubMed  Google Scholar 

  137. Elens L, Nieuweboer A, Clarke SJ et al (2013) CYP3A4 intron 6 C > T SNP (CYP3A4*22) encodes lower CYP3A4 activity in cancer patients, as measured with probes midazolam and erythromycin. Pharmacogenomics 14(2):137–149. doi:10.2217/pgs.12.202

    CAS  PubMed  Google Scholar 

  138. de Wildt SN, Kearns GL, Leeder JS et al (1999) Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36(6):439–452

    PubMed  Google Scholar 

  139. Paoluzzi L, Singh AS, Price DK et al (2004) Influence of genetic variants in UGT1A1 and UGT1A9 on the in vivo glucuronidation of SN-38. J Clin Pharmacol 44(8):854–860. doi:10.1177/0091270004267159

    CAS  PubMed  Google Scholar 

  140. Innocenti F, Undevia SD, Iyer L et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22(8):1382–1388. doi:10.1200/JCO.2004.07.173

    CAS  PubMed  Google Scholar 

  141. Ando Y, Saka H, Ando M et al (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60(24):6921–6926

    CAS  PubMed  Google Scholar 

  142. Iyer L, Das S, Janisch L et al (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2(1):43–47

    CAS  PubMed  Google Scholar 

  143. Marcuello E, Altes A, Menoyo A et al (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91(4):678–682. doi:10.1038/sj.bjc.6602042

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Innocenti F, Kroetz DL, Schuetz E et al (2009) Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27(16):2604–2614. doi:10.1200/JCO.2008.20.6300

    CAS  PubMed  Google Scholar 

  145. Carlini LE, Meropol NJ, Bever J et al (2005) UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 11(3):1226–1236

    CAS  PubMed  Google Scholar 

  146. Ehmer U, Vogel A, Schutte JK et al (2004) Variation of hepatic glucuronidation: novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology 39(4):970–977. doi:10.1002/hep.20131

    CAS  PubMed  Google Scholar 

  147. Zhou J, Argikar UA, Remmel RP (2011) Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics 12(12):1671–1679. doi:10.2217/pgs.11.105

    CAS  PubMed  Google Scholar 

  148. Erickson-Ridout KK, Zhu J, Lazarus P (2011) Olanzapine metabolism and the significance of UGT1A448V and UGT2B1067Y variants. Pharmacogenet Genomics 21(9):539–551. doi:10.1097/FPC.0b013e328348c76b

    CAS  PubMed  Google Scholar 

  149. Gulcebi MI, Ozkaynakci A, Goren MZ et al (2011) The relationship between UGT1A4 polymorphism and serum concentration of lamotrigine in patients with epilepsy. Epilepsy Res 95(1–2):1–8. doi:10.1016/j.eplepsyres.2011.01.016

    CAS  PubMed  Google Scholar 

  150. Evans WE (2004) Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 26(2):186–191

    CAS  PubMed  Google Scholar 

  151. Crabb DW, Edenberg HJ, Bosron WF et al (1989) Genotypes for aldehyde dehydrogenase deficiency and alcohol sensitivity. The inactive ALDH2(2) allele is dominant. J Clin Invest 83(1):314–316. doi:10.1172/JCI113875

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Xiao Q, Weiner H, Johnston T et al (1995) The aldehyde dehydrogenase ALDH2*2 allele exhibits dominance over ALDH2*1 in transduced HeLa cells. J Clin Invest 96(5):2180–2186. doi:10.1172/JCI118272

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Mizoi Y, Yamamoto K, Ueno Y et al (1994) Involvement of genetic polymorphism of alcohol and aldehyde dehydrogenases in individual variation of alcohol metabolism. Alcohol Alcohol 29(6):707–710

    CAS  PubMed  Google Scholar 

  154. Wall TL (2005) Genetic associations of alcohol and aldehyde dehydrogenase with alcohol dependence and their mechanisms of action. Ther Drug Monit 27(6):700–703

    CAS  PubMed  Google Scholar 

  155. van Kuilenburg AB (2004) Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer 40(7):939–950. doi:10.1016/j.ejca.2003.12.004

    PubMed  Google Scholar 

  156. Anderson GD (2005) Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet 44(10):989–1008

    CAS  PubMed  Google Scholar 

  157. Hines RN (2008) The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther 118(2):250–267. doi:10.1016/j.pharmthera.2008.02.005

    CAS  PubMed  Google Scholar 

  158. Verbeeck RK, Musuamba FT (2009) Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol 65(8):757–773. doi:10.1007/s00228-009-0678-8

    CAS  PubMed  Google Scholar 

  159. Villeneuve JP, Pichette V (2004) Cytochrome P450 and liver diseases. Curr Drug Metab 5(3):273–282

    CAS  PubMed  Google Scholar 

  160. Brockmoller J, Thomsen T, Wittstock M et al (2005) Pharmacokinetics of levetiracetam in patients with moderate to severe liver cirrhosis (Child-Pugh classes A, B, and C): characterization by dynamic liver function tests. Clin Pharmacol Ther 77(6):529–541. doi:10.1016/j.clpt.2005.02.003

    PubMed  Google Scholar 

  161. Zhang Y, Zhang L, Abraham S et al (2009) Assessment of the impact of renal impairment on systemic exposure of new molecular entities: evaluation of recent new drug applications. Clin Pharmacol Ther 85(3):305–311. doi:10.1038/clpt.2008.208

    CAS  PubMed  Google Scholar 

  162. Huang YS, Lee SD, Deng JF et al (1993) Measuring lidocaine metabolite–monoethylglycinexylidide as a quantitative index of hepatic function in adults with chronic hepatitis and cirrhosis. J Hepatol 19(1):140–147

    CAS  PubMed  Google Scholar 

  163. Shiffman ML, Luketic VA, Sanyal AJ et al (1994) Hepatic lidocaine metabolism and liver histology in patients with chronic hepatitis and cirrhosis. Hepatology 19(4):933–940

    CAS  PubMed  Google Scholar 

  164. Molino G, Cavanna A, Avagnina P et al (1987) Hepatic clearance of D-sorbitol. Noninvasive test for evaluating functional liver plasma flow. Dig Dis Sci 32(7):753–758

    CAS  PubMed  Google Scholar 

  165. Zeeh J, Lange H, Bosch J et al (1988) Steady-state extrarenal sorbitol clearance as a measure of hepatic plasma flow. Gastroenterology 95(3):749–759

    CAS  PubMed  Google Scholar 

  166. Fazakas J, Mandli T, Ther G et al (2006) Evaluation of liver function for hepatic resection. Transplant Proc 38(3):798–800. doi:10.1016/j.transproceed.2006.01.048

    CAS  PubMed  Google Scholar 

  167. Lorf T, Schnitzbauer AA, Schaefers SK et al (2008) Prognostic value of the monoethylglycinexylidide (MEGX)-test prior to liver resection. Hepatogastroenterology 55(82–83):539–543

    CAS  PubMed  Google Scholar 

  168. George J, Liddle C, Murray M et al (1995) Pre-translational regulation of cytochrome P450 genes is responsible for disease-specific changes of individual P450 enzymes among patients with cirrhosis. Biochem Pharmacol 49(7):873–881

    CAS  PubMed  Google Scholar 

  169. George J, Murray M, Byth K et al (1995) Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21(1):120–128

    CAS  PubMed  Google Scholar 

  170. Frye RF, Zgheib NK, Matzke GR et al (2006) Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin Pharmacol Ther 80(3):235–245. doi:10.1016/j.clpt.2006.05.006

    CAS  PubMed  Google Scholar 

  171. Hatorp V, Walther KH, Christensen MS et al (2000) Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J Clin Pharmacol 40(2):142–152

    CAS  PubMed  Google Scholar 

  172. Adedoyin A, Arns PA, Richards WO et al (1998) Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6. Clin Pharmacol Ther 64(1):8–17. doi:10.1016/S0009-9236(98)90017-0

    CAS  PubMed  Google Scholar 

  173. Pique JM, Feu F, de Prada G et al (2002) Pharmacokinetics of omeprazole given by continuous intravenous infusion to patients with varying degrees of hepatic dysfunction. Clin Pharmacokinet 41(12):999–1004

    CAS  PubMed  Google Scholar 

  174. Sjovall H, Bjornsson E, Holmberg J et al (2002) Pharmacokinetic study of esomeprazole in patients with hepatic impairment. Eur J Gastroenterol Hepatol 14(5):491–496

    CAS  PubMed  Google Scholar 

  175. Abdallah H, Jerling M (2005) Effect of hepatic impairment on the multiple-dose pharmacokinetics of ranolazine sustained-release tablets. J Clin Pharmacol 45(7):802–809. doi:10.1177/0091270005276739

    CAS  PubMed  Google Scholar 

  176. Chalasani N, Gorski JC, Patel NH et al (2001) Hepatic and intestinal cytochrome P450 3A activity in cirrhosis: effects of transjugular intrahepatic portosystemic shunts. Hepatology 34(6):1103–1108. doi:10.1053/jhep.2001.29306

    CAS  PubMed  Google Scholar 

  177. Kleinbloesem CH, van Harten J, Wilson JP et al (1986) Nifedipine: kinetics and hemodynamic effects in patients with liver cirrhosis after intravenous and oral administration. Clin Pharmacol Ther 40(1):21–28

    CAS  PubMed  Google Scholar 

  178. Nelson E (1964) Rate of metabolism of tolbutamide in test subjects with liver disease or with impaired renal function. Am J Med Sci 248:657–659

    CAS  PubMed  Google Scholar 

  179. Chalon SA, Desager JP, Desante KA et al (2003) Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 73(3):178–191. doi:10.1067/mcp.2003.25

    CAS  PubMed  Google Scholar 

  180. Hoyumpa AM, Schenker S (1991) Is glucuronidation truly preserved in patients with liver disease? Hepatology 13(4):786–795

    CAS  PubMed  Google Scholar 

  181. Elekima OT, Mills CO, Ahmad A et al (2000) Reduced hepatic content of dehydroepiandrosterone sulphotransferase in chronic liver diseases. Liver 20(1):45–50

    CAS  PubMed  Google Scholar 

  182. Hardwick RN, Ferreira DW, More VR et al (2013) Altered UDP-glucuronosyltransferase and sulfotransferase expression and function during progressive stages of human nonalcoholic fatty liver disease. Drug Metabol Dispos 41(3):554–561. doi:10.1124/dmd.112.048439

    CAS  Google Scholar 

  183. Morgan DJ, McLean AJ (1995) Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease. An update. Clin Pharmacokinet 29(5):370–391

    CAS  PubMed  Google Scholar 

  184. Palatini P, De Martin S, Pegoraro P et al (2008) Enzyme inhibition and induction in liver disease. Curr Clin Pharmacol 3(1):56–69

    CAS  PubMed  Google Scholar 

  185. Lohr JW, Willsky GR, Acara MA (1998) Renal drug metabolism. Pharmacol Rev 50(1):107–141

    CAS  PubMed  Google Scholar 

  186. Yeung CK, Lang DH, Thummel KE et al (2000) Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metabol Dispos 28(9):1107–1111

    CAS  Google Scholar 

  187. Zheng S, Tasnif Y, Hebert MF et al (2013) CYP3A5 gene variation influences cyclosporine a metabolite formation and renal cyclosporine disposition. Transplantation 95(6):821–827. doi:10.1097/TP.0b013e31827e6ad9

    CAS  PubMed  Google Scholar 

  188. Dai Y, Iwanaga K, Lin YS et al (2004) In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol 68(9):1889–1902. doi:10.1016/j.bcp.2004.07.012

    CAS  PubMed  Google Scholar 

  189. Korashy HM, Elbekai RH, El-Kadi AO (2004) Effects of renal diseases on the regulation and expression of renal and hepatic drug-metabolizing enzymes: a review. Xenobiotica 34(1):1–29. doi:10.1080/00498250310001638460

    CAS  PubMed  Google Scholar 

  190. Dowling TC, Briglia AE, Fink JC et al (2003) Characterization of hepatic cytochrome p4503A activity in patients with end-stage renal disease. Clin Pharmacol Ther 73(5):427–434

    CAS  PubMed  Google Scholar 

  191. Nolin TD, Frye RF, Le P et al (2009) ESRD impairs nonrenal clearance of fexofenadine but not midazolam. JASN 20(10):2269–2276. doi:10.1681/ASN.2009010082

    CAS  PubMed  Google Scholar 

  192. Elston AC, Bayliss MK, Park GR (1993) Effect of renal failure on drug metabolism by the liver. Br J Anaesth 71(2):282–290

    CAS  PubMed  Google Scholar 

  193. Balant L, Francis RJ, Tozer TN et al (1980) Influence of renal failure on the hepatic clearance of bufuralol in man. J Pharmacokinet Biopharm 8(5):421–438

    CAS  PubMed  Google Scholar 

  194. Gibson TP (1986) Renal disease and drug metabolism: an overview. Am J Kidney Dis 8(1):7–17

    CAS  PubMed  Google Scholar 

  195. Touchette MA, Slaughter RL (1991) The effect of renal failure on hepatic drug clearance. Ann Pharmacother 25(11):1214–1224

    CAS  Google Scholar 

  196. Michaud J, Nolin TD, Naud J et al (2008) Effect of hemodialysis on hepatic cytochrome P450 functional expression. J Pharmacol Sci 108(2):157–163

    CAS  PubMed  Google Scholar 

  197. Szeto CC, Chow KM, Kwan BC et al (2006) Relation between number of prescribed medication and outcome in peritoneal dialysis patients. Clin Nephrol 66(4):256–262

    CAS  PubMed  Google Scholar 

  198. Fletcher CV, Acosta EP, Strykowski JM (1994) Gender differences in human pharmacokinetics and pharmacodynamics. J Adolesc Health 15(8):619–629

    CAS  PubMed  Google Scholar 

  199. Harris RZ, Benet LZ, Schwartz JB (1995) Gender effects in pharmacokinetics and pharmacodynamics. Drugs 50(2):222–239

    CAS  PubMed  Google Scholar 

  200. Parkinson A, Mudra DR, Johnson C et al (2004) The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol 199(3):193–209. doi:10.1016/j.taap.2004.01.010

    CAS  PubMed  Google Scholar 

  201. Hunt CM, Westerkam WR, Stave GM (1992) Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 44(2):275–283

    CAS  PubMed  Google Scholar 

  202. Pollock BG (1997) Gender differences in psychotropic drug metabolism. Psychopharmacol Bull 33(2):235–241

    CAS  PubMed  Google Scholar 

  203. Diczfalusy U, Miura J, Roh HK et al (2008) 4Beta-hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians. Pharmacogenet Genomics 18(3):201–208. doi:10.1097/FPC.0b013e3282f50ee9

    CAS  PubMed  Google Scholar 

  204. Wolbold R, Klein K, Burk O et al (2003) Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 38(4):978–988. doi:10.1053/jhep.2003.50393

    CAS  PubMed  Google Scholar 

  205. Hu ZY, Zhao YS (2010) Sex-dependent differences in cytochrome P450 3A activity as assessed by midazolam disposition in humans: a meta-analysis. Drug Metabol Dispos 38(5):817–823. doi:10.1124/dmd.109.031328

    CAS  Google Scholar 

  206. Chetty M, Mattison D, Rostami-Hodjegan A (2012) Sex differences in the clearance of CYP3A4 substrates: exploring possible reasons for the substrate dependency and lack of consensus. Curr Drug Metab 13(6):778–786

    CAS  PubMed  Google Scholar 

  207. Schuetz EG, Furuya KN, Schuetz JD (1995) Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther 275(2):1011–1018

    CAS  PubMed  Google Scholar 

  208. Paine MF, Ludington SS, Chen ML et al (2005) Do men and women differ in proximal small intestinal CYP3A or P-glycoprotein expression? Drug Metabol Dispos 33(3):426–433. doi:10.1124/dmd.104.002469

    CAS  Google Scholar 

  209. Relling MV, Lin JS, Ayers GD et al (1992) Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 52(6):643–658

    CAS  PubMed  Google Scholar 

  210. Kim RB, O’Shea D (1995) Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin Pharmacol Ther 57(6):645–655. doi:10.1016/0009-9236(95)90227-9

    CAS  PubMed  Google Scholar 

  211. Bebia Z, Buch SC, Wilson JW et al (2004) Bioequivalence revisited: influence of age and sex on CYP enzymes. Clin Pharmacol Ther 76(6):618–627. doi:10.1016/j.clpt.2004.08.021

    CAS  PubMed  Google Scholar 

  212. Aksoy IA, Sochorova V, Weinshilboum RM (1993) Human liver dehydroepiandrosterone sulfotransferase: nature and extent of individual variation. Clin Pharmacol Ther 54(5):498–506

    CAS  PubMed  Google Scholar 

  213. Brittelli A, De Santi C, Raunio H et al (1999) Interethnic and interindividual variabilities of platelet sulfotransferases activity in Italians and Finns. Eur J Clin Pharmacol 55(9):691–695

    CAS  PubMed  Google Scholar 

  214. Marazziti D, Palego L, Rossi A et al (1998) Gender-related seasonality of human platelet phenolsulfotransferase activity. Neuropsychobiology 38(1):1–5

    CAS  PubMed  Google Scholar 

  215. Boudikova B, Szumlanski C, Maidak B et al (1990) Human liver catechol-O-methyltransferase pharmacogenetics. Clin Pharmacol Ther 48(4):381–389

    CAS  PubMed  Google Scholar 

  216. McLeod HL, Fang L, Luo X et al (1994) Ethnic differences in erythrocyte catechol-O-methyltransferase activity in black and white Americans. J Pharmacol Exp Ther 270(1):26–29

    CAS  PubMed  Google Scholar 

  217. McLeod HL, Lin JS, Scott EP et al (1994) Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 55(1):15–20

    CAS  PubMed  Google Scholar 

  218. Court MH, Duan SX, von Moltke LL et al (2001) Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther 299(3):998–1006

    CAS  PubMed  Google Scholar 

  219. Bock KW, Schrenk D, Forster A et al (1994) The influence of environmental and genetic factors on CYP2D6, CYP1A2 and UDP-glucuronosyltransferases in man using sparteine, caffeine, and paracetamol as probes. Pharmacogenetics 4(4):209–218

    CAS  PubMed  Google Scholar 

  220. Miners JO, Attwood J, Birkett DJ (1983) Influence of sex and oral contraceptive steroids on paracetamol metabolism. Br J Clin Pharmacol 16(5):503–509

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Butera L, Feinfeld DA, Bhargava M (1990) Sex differences in the subunits of glutathione-S-transferase isoenzyme from rat and human kidney. Enzyme 43(4):175–182

    CAS  PubMed  Google Scholar 

  222. Edelman A, Munar M, Elman MR et al (2012) Effect of the ethinylestradiol/levonorgestrel combined oral contraceptive on the activity of cytochrome P4503A in obese women. Br J Clin Pharmacol 74(3):510–514. doi:10.1111/j.1365-2125.2012.04209.x

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Palovaara S, Kivisto KT, Tapanainen P et al (2000) Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br J Clin Pharmacol 50(4):333–337

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Belle DJ, Callaghan JT, Gorski JC et al (2002) The effects of an oral contraceptive containing ethinyloestradiol and norgestrel on CYP3A activity. Br J Clin Pharmacol 53(1):67–74

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Schwartz JB (2003) The influence of sex on pharmacokinetics. Clin Pharmacokinet 42(2):107–121

    CAS  PubMed  Google Scholar 

  226. Jennings TS, Nafziger AN, Davidson L et al (1993) Gender differences in hepatic induction and inhibition of theophylline pharmacokinetics and metabolism. J Lab Clin Med 122(2):208–216

    CAS  PubMed  Google Scholar 

  227. Gorski JC, Vannaprasaht S, Hamman MA et al (2003) The effect of age, sex, and rifampin administration on intestinal and hepatic cytochrome P450 3A activity. Clin Pharmacol Ther 74(3):275–287. doi:10.1016/S0009-9236(03)00187-5

    CAS  PubMed  Google Scholar 

  228. Hagg S, Spigset O, Dahlqvist R (2001) Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br J Clin Pharmacol 51(2):169–173

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Labbe L, Sirois C, Pilote S et al (2000) Effect of gender, sex hormones, time variables and physiological urinary pH on apparent CYP2D6 activity as assessed by metabolic ratios of marker substrates. Pharmacogenetics 10(5):425–438

    CAS  PubMed  Google Scholar 

  230. Tamminga WJ, Wemer J, Oosterhuis B et al (1999) CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 55(3):177–184

    CAS  PubMed  Google Scholar 

  231. Feghali MN, Mattison DR (2011) Clinical therapeutics in pregnancy. J Biomed Biotechnol 2011:783528. doi:10.1155/2011/783528

    PubMed Central  PubMed  Google Scholar 

  232. Tracy TS, Venkataramanan R, Glover DD et al (2005) Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol 192(2):633–639. doi:10.1016/j.ajog.2004.08.030

    CAS  PubMed  Google Scholar 

  233. Hebert MF, Easterling TR, Kirby B et al (2008) Effects of pregnancy on CYP3A and P-glycoprotein activities as measured by disposition of midazolam and digoxin: a University of Washington specialized center of research study. Clin Pharmacol Ther 84(2):248–253. doi:10.1038/clpt.2008.1

    CAS  PubMed  Google Scholar 

  234. Hogstedt S, Lindberg B, Peng DR et al (1985) Pregnancy-induced increase in metoprolol metabolism. Clin Pharmacol Ther 37(6):688–692

    CAS  PubMed  Google Scholar 

  235. Buchanan ML, Easterling TR, Carr DB et al (2009) Clonidine pharmacokinetics in pregnancy. Drug Metabol Dispos 37(4):702–705. doi:10.1124/dmd.108.024984

    CAS  Google Scholar 

  236. Ververs FF, Voorbij HA, Zwarts P et al (2009) Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy. Clin Pharmacokinet 48(10):677–683. doi:10.2165/11318050-000000000-00000

    CAS  PubMed  Google Scholar 

  237. Hebert MF, Ma X, Naraharisetti SB et al (2009) Are we optimizing gestational diabetes treatment with glyburide? The pharmacologic basis for better clinical practice. Clin Pharmacol Ther 85(6):607–614. doi:10.1038/clpt.2009.5

    CAS  PubMed Central  PubMed  Google Scholar 

  238. Ohman I, Luef G, Tomson T (2008) Effects of pregnancy and contraception on lamotrigine disposition: new insights through analysis of lamotrigine metabolites. Seizure 17(2):199–202. doi:10.1016/j.seizure.2007.11.017

    PubMed  Google Scholar 

  239. Eyal S, Easterling TR, Carr D et al (2010) Pharmacokinetics of metformin during pregnancy. Drug Metabol Dispos 38(5):833–840. doi:10.1124/dmd.109.031245

    CAS  Google Scholar 

  240. Pasanen M, Pelkonen O (1994) The expression and environmental regulation of P450 enzymes in human placenta. Crit Rev Toxicol 24(3):211–229. doi:10.3109/10408449409021606

    CAS  PubMed  Google Scholar 

  241. Rubinchik-Stern M, Eyal S (2012) Drug interactions at the human placenta: what is the evidence? Front Pharmacol 3:126. doi:10.3389/fphar.2012.00126

    PubMed Central  PubMed  Google Scholar 

  242. Tomson T, Landmark CJ, Battino D (2013) Antiepileptic drug treatment in pregnancy: changes in drug disposition and their clinical implications. Epilepsia 54(3):405–414. doi:10.1111/epi.12109

    CAS  PubMed  Google Scholar 

  243. Wolff K, Boys A, Rostami-Hodjegan A et al (2005) Changes to methadone clearance during pregnancy. Eur J Clin Pharmacol 61(10):763–768. doi:10.1007/s00228-005-0035-5

    CAS  PubMed  Google Scholar 

  244. van Heeswijk RP, Khaliq Y, Gallicano KD et al (2004) The pharmacokinetics of nelfinavir and M8 during pregnancy and post partum. Clin Pharmacol Ther 76(6):588–597. doi:10.1016/j.clpt.2004.08.011

    PubMed  Google Scholar 

  245. Jeong H (2010) Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes. Expert Opin Drug Metab Toxicol 6(6):689–699. doi:10.1517/17425251003677755

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Hines RN (2007) Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol 21(4):169–175

    CAS  PubMed  Google Scholar 

  247. Stevens JC, Hines RN, Gu C et al (2003) Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther 307(2):573–582. doi:10.1124/jpet.103.054841

    CAS  PubMed  Google Scholar 

  248. Johnsrud EK, Koukouritaki SB, Divakaran K et al (2003) Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther 307(1):402–407. doi:10.1124/jpet.102.053124

    CAS  PubMed  Google Scholar 

  249. Treluyer JM, Jacqz-Aigrain E, Alvarez F et al (1991) Expression of CYP2D6 in developing human liver. Eur J Biochem 202(2):583–588

    CAS  PubMed  Google Scholar 

  250. Blake MJ, Gaedigk A, Pearce RE et al (2007) Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 81(4):510–516. doi:10.1038/sj.clpt.6100101

    CAS  PubMed  Google Scholar 

  251. Koukouritaki SB, Manro JR, Marsh SA et al (2004) Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther 308(3):965–974. doi:10.1124/jpet.103.060137

    CAS  PubMed  Google Scholar 

  252. Sonnier M, Cresteil T (1998) Delayed ontogenesis of CYP1A2 in the human liver. Eur J Biochem 251(3):893–898

    CAS  PubMed  Google Scholar 

  253. Tateishi T, Nakura H, Asoh M et al (1997) A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci 61(26):2567–2574

    CAS  PubMed  Google Scholar 

  254. Koukouritaki SB, Simpson P, Yeung CK et al (2002) Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res 51(2):236–243. doi:10.1203/00006450-200202000-00018

    CAS  PubMed  Google Scholar 

  255. Smith M, Hopkinson DA, Harris H (1971) Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet 34(3):251–271

    CAS  PubMed  Google Scholar 

  256. Krekels EH, Danhof M, Tibboel D et al (2012) Ontogeny of hepatic glucuronidation; methods and results. Curr Drug Metab 13(6):728–743

    CAS  PubMed  Google Scholar 

  257. Blake MJ, Abdel-Rahman SM, Pearce RE et al (2006) Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatr Res 60(6):717–723. doi:10.1203/01.pdr.0000245909.74166.00

    CAS  PubMed  Google Scholar 

  258. Battino D, Estienne M, Avanzini G (1995) Clinical pharmacokinetics of antiepileptic drugs in paediatric patients. Part II. Phenytoin, carbamazepine, sulthiame, lamotrigine, vigabatrin, oxcarbazepine and felbamate. Clin Pharmacokinet 29(5):341–369

    CAS  PubMed  Google Scholar 

  259. Witcher JW, Long A, Smith B et al (2003) Atomoxetine pharmacokinetics in children and adolescents with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 13(1):53–63. doi:10.1089/104454603321666199

    PubMed  Google Scholar 

  260. Wynne HA, Cope LH, Mutch E et al (1989) The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology 9(2):297–301

    CAS  PubMed  Google Scholar 

  261. Hermann R, Ferron GM, Erb K et al (2003) Effects of age and sex on the disposition of retigabine. Clin Pharmacol Ther 73(1):61–70. doi:10.1067/mcp.2003.12

    CAS  PubMed  Google Scholar 

  262. Sonne J, Loft S, Dossing M et al (1991) Single dose pharmacokinetics and pharmacodynamics of oral oxazepam in very elderly institutionalised subjects. Br J Clin Pharmacol 31(6):719–722

    CAS  PubMed Central  PubMed  Google Scholar 

  263. Miners JO, Penhall R, Robson RA et al (1988) Comparison of paracetamol metabolism in young adult and elderly males. Eur J Clin Pharmacol 35(2):157–160

    CAS  PubMed  Google Scholar 

  264. Qato DM, Alexander GC, Conti RM et al (2008) Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA 300(24):2867–2878. doi:10.1001/jama.2008.892

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Anderson KE, McCleery RB, Vesell ES et al (1991) Diet and cimetidine induce comparable changes in theophylline metabolism in normal subjects. Hepatology 13(5):941–946

    CAS  PubMed  Google Scholar 

  266. Tinkelman DG, Edelman L, Decouto J et al (1985) The effect of diet on the metabolism of long acting theophylline. Ann Allergy 54(4):280–283

    CAS  PubMed  Google Scholar 

  267. Lampe JW, King IB, Li S et al (2000) Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 21(6):1157–1162

    CAS  PubMed  Google Scholar 

  268. Sinha R, Rothman N, Brown ED et al (1994) Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res 54(23):6154–6159

    CAS  PubMed  Google Scholar 

  269. Homeida M, Karrar ZA, Roberts CJ (1979) Drug metabolism in malnourished children: a study with antipyrine. Arch Dis Child 54(4):299–302

    CAS  PubMed  Google Scholar 

  270. Ohlman S, Lindholm A, Hagglund H et al (1993) On the intraindividual variability and chronobiology of cyclosporine pharmacokinetics in renal transplantation. Eur J Clin Pharmacol 44(3):265–269

    CAS  PubMed  Google Scholar 

  271. Klotz U, Ziegler G (1982) Physiologic and temporal variation in hepatic elimination of midazolam. Clin Pharmacol Ther 32(1):107–112

    CAS  PubMed  Google Scholar 

  272. Ohno M, Yamaguchi I, Ito T et al (2000) Circadian variation of the urinary 6beta-hydroxycortisol to cortisol ratio that would reflect hepatic CYP3A activity. Eur J Clin Pharmacol 55(11–12):861–865

    CAS  PubMed  Google Scholar 

  273. Lindh JD, Andersson ML, Eliasson E et al (2011) Seasonal variation in blood drug concentrations and a potential relationship to vitamin D. Drug Metabol Dispos 39(5):933–937. doi:10.1124/dmd.111.038125

    CAS  Google Scholar 

  274. Thirumaran RK, Lamba JK, Kim RB et al (2012) Intestinal CYP3A4 and midazolam disposition in vivo associate with VDR polymorphisms and show seasonal variation. Biochem Pharmacol 84(1):104–112. doi:10.1016/j.bcp.2012.03.017

    CAS  PubMed Central  PubMed  Google Scholar 

  275. Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149. doi:10.1146/annurev.pharmtox.46.120604.141059

    CAS  PubMed  Google Scholar 

  276. Morgan ET (2009) Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther 85(4):434–438. doi:10.1038/clpt.2008.302

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Morgan ET, Goralski KB, Piquette-Miller M et al (2008) Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metabol Dispos 36(2):205–216. doi:10.1124/dmd.107.018747

    CAS  Google Scholar 

  278. Satarug S, Lang MA, Yongvanit P et al (1996) Induction of cytochrome P450 2A6 expression in humans by the carcinogenic parasite infection, opisthorchiasis viverrini. Cancer Epidemiol Biomark Pre 5(10):795–800

    CAS  Google Scholar 

  279. Treluyer JM, Benech H, Colin I et al (2000) Ontogenesis of CYP2C-dependent arachidonic acid metabolism in the human liver: relationship with sudden infant death syndrome. Pediatr Res 47(5):677–683

    CAS  PubMed  Google Scholar 

  280. Treluyer JM, Cheron G, Sonnier M et al (1996) Cytochrome P-450 expression in sudden infant death syndrome. Biochem Pharmacol 52(3):497–504

    CAS  PubMed  Google Scholar 

  281. Jones AE, Brown KC, Werner RE et al (2010) Variability in drug metabolizing enzyme activity in HIV-infected patients. Eur J Clin Pharmacol 66(5):475–485. doi:10.1007/s00228-009-0777-6

    CAS  PubMed Central  PubMed  Google Scholar 

  282. Jetter A, Fatkenheuer G, Frank D et al (2010) Do activities of cytochrome P450 (CYP)3A, CYP2D6 and P-glycoprotein differ between healthy volunteers and HIV-infected patients? Antivir Ther 15(7):975–983. doi:10.3851/IMP1648

    CAS  PubMed  Google Scholar 

  283. Chang KC, Bell TD, Lauer BA et al (1978) Altered theophylline pharmacokinetics during acute respiratory viral illness. Lancet 1(8074):1132–1133

    CAS  PubMed  Google Scholar 

  284. Kraemer MJ, Furukawa CT, Koup JR et al (1982) Altered theophylline clearance during an influenza B outbreak. Pediatrics 69(4):476–480

    CAS  PubMed  Google Scholar 

  285. Carcillo JA (2005) Reducing the global burden of sepsis in infants and children: a clinical practice research agenda. Pediatr Crit Care Med 6(3 Suppl):S157–S164. doi:10.1097/01.PCC.0000161574.36857.CA

    PubMed  Google Scholar 

  286. Haas CE, Kaufman DC, Jones CE et al (2003) Cytochrome P450 3A4 activity after surgical stress. Crit Care Med 31(5):1338–1346. doi:10.1097/01.CCM.0000063040.24541.49

    CAS  PubMed  Google Scholar 

  287. Lee CM, Pohl J, Morgan ET (2009) Dual mechanisms of CYP3A protein regulation by proinflammatory cytokine stimulation in primary hepatocyte cultures. Drug Metabol Dispos 37(4):865–872. doi:10.1124/dmd.108.026187

    CAS  Google Scholar 

  288. Chen YL, Le Vraux V, Leneveu A et al (1994) Acute-phase response, interleukin-6, and alteration of cyclosporine pharmacokinetics. Clin Pharmacol Ther 55(6):649–660

    CAS  PubMed  Google Scholar 

  289. Schmitt C, Kuhn B, Zhang X et al (2011) Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 89(5):735–740. doi:10.1038/clpt.2011.35

    CAS  PubMed  Google Scholar 

  290. Dickmann LJ, Patel SK, Rock DA et al (2011) Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metabol Dispos 39(8):1415–1422. doi:10.1124/dmd.111.038679

    CAS  Google Scholar 

  291. Brennan BJ, Xu ZX, Grippo JF (2013) Effect of peginterferon alfa-2a (40KD) on cytochrome P450 isoenzyme activity. Br J Clin Pharmacol 75(2):497–506. doi:10.1111/j.1365-2125.2012.04373.x

    CAS  PubMed Central  PubMed  Google Scholar 

  292. Huang SM, Temple R (2008) Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin Pharmacol Ther 84(3):287–294. doi:10.1038/clpt.2008.144

    PubMed  Google Scholar 

  293. Guengerich FP, Turvy CG (1991) Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J Pharmacol Exp Ther 256(3):1189–1194

    CAS  PubMed  Google Scholar 

  294. Sotaniemi EA, Rautio A, Backstrom M et al (1995) CYP3A4 and CYP2A6 activities marked by the metabolism of lignocaine and coumarin in patients with liver and kidney diseases and epileptic patients. Br J Clin Pharmacol 39(1):71–76

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Furlan V, Demirdjian S, Bourdon O et al (1999) Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther 289(2):1169–1175

    CAS  PubMed  Google Scholar 

  296. Marcellin P, de Bony F, Garret C et al (2001) Influence of cirrhosis on lamotrigine pharmacokinetics. Br J Clin Pharmacol 51(5):410–414

    CAS  PubMed Central  PubMed  Google Scholar 

  297. Marbury TC, Ruckle JL, Hatorp V et al (2000) Pharmacokinetics of repaglinide in subjects with renal impairment. Clin Pharmacol Ther 67(1):7–15. doi:10.1067/mcp.2000.103973

    CAS  PubMed  Google Scholar 

  298. Chapelsky MC, Thompson-Culkin K, Miller AK et al (2003) Pharmacokinetics of rosiglitazone in patients with varying degrees of renal insufficiency. J Clin Pharmacol 43(3):252–259

    CAS  PubMed  Google Scholar 

  299. Thompson-Culkin K, Zussman B, Miller AK et al (2002) Pharmacokinetics of rosiglitazone in patients with end-stage renal disease. J Int Med Res 30(4):391–399

    CAS  PubMed  Google Scholar 

  300. Aramwit P, Supasyndh O, Sriboonruang T (2008) Pharmacokinetics of single-dose rosiglitazone in chronic ambulatory peritoneal dialysis patients. J Clin Pharm Ther 33(6):685–690. doi:10.1111/j.1365-2710.2008.00967.x

    CAS  PubMed  Google Scholar 

  301. Dreisbach AW, Japa S, Gebrekal AB et al (2003) Cytochrome P4502C9 activity in end-stage renal disease. Clin Pharmacol Ther 73(5):475–477

    CAS  PubMed  Google Scholar 

  302. Vinik HR, Reves JG, Greenblatt DJ et al (1983) The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology 59(5):390–394

    CAS  PubMed  Google Scholar 

  303. Muirhead GJ, Rance DJ, Walker DK et al (2002) Comparative human pharmacokinetics and metabolism of single-dose oral and intravenous sildenafil. Br J Clin Pharmacol 53(Suppl 1):13S–20S

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Singlas E, Pioger JC, Taburet AM et al (1989) Zidovudine disposition in patients with severe renal impairment: influence of hemodialysis. Clin Pharmacol Ther 46(2):190–197

    CAS  PubMed  Google Scholar 

  305. Kim YG, Shin JG, Shin SG et al (1993) Decreased acetylation of isoniazid in chronic renal failure. Clin Pharmacol Ther 54(6):612–620

    CAS  PubMed  Google Scholar 

  306. Brazier JL, Ritter J, Berland M et al (1983) Pharmacokinetics of caffeine during and after pregnancy. Dev Pharmacol Ther 6(5):315–322

    CAS  PubMed  Google Scholar 

  307. Parsons WD, Pelletier JG (1982) Delayed elimination of caffeine by women in the last 2 weeks of pregnancy. Can Med Assoc J 127(5):377–380

    CAS  PubMed Central  PubMed  Google Scholar 

  308. Carter BL, Driscoll CE, Smith GD (1986) Theophylline clearance during pregnancy. Obstet Gynecol 68(4):555–559

    CAS  PubMed  Google Scholar 

  309. Gardner MJ, Schatz M, Cousins L et al (1987) Longitudinal effects of pregnancy on the pharmacokinetics of theophylline. Eur J Clin Pharmacol 32(3):289–295

    CAS  PubMed  Google Scholar 

  310. Wright LN, Thorp JM Jr, Kuller JA et al (1997) Transdermal nicotine replacement in pregnancy: maternal pharmacokinetics and fetal effects. Am J Obstet Gynecol 176(5):1090–1094

    CAS  PubMed  Google Scholar 

  311. Cressey TR, Stek A, Capparelli E et al (2012) Efavirenz pharmacokinetics during the third trimester of pregnancy and postpartum. J Acquir Immune Defic Syndr 59(3):245–252. doi:10.1097/QAI.0b013e31823ff052

    CAS  PubMed Central  PubMed  Google Scholar 

  312. Dickinson RG, Hooper WD, Wood B et al (1989) The effect of pregnancy in humans on the pharmacokinetics of stable isotope labelled phenytoin. Br J Clin Pharmacol 28(1):17–27

    CAS  PubMed Central  PubMed  Google Scholar 

  313. Tomson T, Lindbom U, Ekqvist B et al (1994) Disposition of carbamazepine and phenytoin in pregnancy. Epilepsia 35(1):131–135

    CAS  PubMed  Google Scholar 

  314. McGready R, Stepniewska K, Edstein MD et al (2003) The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria. Eur J Clin Pharmacol 59(7):545–552. doi:10.1007/s00228-003-0652-9

    CAS  PubMed  Google Scholar 

  315. McGready R, Stepniewska K, Seaton E et al (2003) Pregnancy and use of oral contraceptives reduces the biotransformation of proguanil to cycloguanil. Eur J Clin Pharmacol 59(7):553–557. doi:10.1007/s00228-003-0651-x

    CAS  PubMed  Google Scholar 

  316. Wadelius M, Darj E, Frenne G et al (1997) Induction of CYP2D6 in pregnancy. Clin Pharmacol Ther 62(4):400–407. doi:10.1016/S0009-9236(97)90118-1

    CAS  PubMed  Google Scholar 

  317. Watts DH, Brown ZA, Tartaglione T et al (1991) Pharmacokinetic disposition of zidovudine during pregnancy. J Infect Dis 163(2):226–232

    CAS  PubMed  Google Scholar 

  318. O’Sullivan MJ, Boyer PJ, Scott GB et al (1993) The pharmacokinetics and safety of zidovudine in the third trimester of pregnancy for women infected with human immunodeficiency virus and their infants: phase I acquired immunodeficiency syndrome clinical trials group study (protocol 082). Zidovudine Collaborative Working Group. Am J Obstet Gynecol 168(5):1510–1516

    PubMed  Google Scholar 

  319. Tsutsumi K, Kotegawa T, Matsuki S et al (2001) The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther 70(2):121–125. doi:10.1067/mcp.2001.116495

    CAS  PubMed  Google Scholar 

  320. Cazeneuve C, Pons G, Rey E et al (1994) Biotransformation of caffeine in human liver microsomes from foetuses, neonates, infants and adults. Br J Clin Pharmacol 37(5):405–412

    CAS  PubMed Central  PubMed  Google Scholar 

  321. Strolin Benedetti M, Whomsley R, Baltes EL (2005) Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin Drug Metab Toxicol 1(3):447–471. doi:10.1517/17425255.1.3.447

    CAS  PubMed  Google Scholar 

  322. Gu J, Su T, Chen Y et al (2000) Expression of biotransformation enzymes in human fetal olfactory mucosa: potential roles in developmental toxicity. Toxicol Appl Pharmacol 165(2):158–162. doi:10.1006/taap.2000.8923

    CAS  PubMed  Google Scholar 

  323. Shimada T, Yamazaki H, Mimura M et al (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270(1):414–423

    CAS  PubMed  Google Scholar 

  324. George J, Byth K, Farrell GC (1995) Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem Pharmacol 50(5):727–730

    CAS  PubMed  Google Scholar 

  325. Vieira I, Sonnier M, Cresteil T (1996) Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur J Biochem 238(2):476–483

    CAS  PubMed  Google Scholar 

  326. Kinirons MT, O’Mahony MS (2004) Drug metabolism and ageing. Br J Clin Pharmacol 57(5):540–544. doi:10.1111/j.1365-2125.2004.02096.x

    CAS  PubMed Central  PubMed  Google Scholar 

  327. Lacroix D, Sonnier M, Moncion A et al (1997) Expression of CYP3A in the human liver – evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem 247(2):625–634

    CAS  PubMed  Google Scholar 

  328. Onishi S, Kawade N, Itoh S et al (1979) Postnatal development of uridine diphosphate glucuronyltransferase activity towards bilirubin and 2-aminophenol in human liver. Biochem J 184(3):705–707

    CAS  PubMed  Google Scholar 

  329. Strassburg CP, Strassburg A, Kneip S et al (2002) Developmental aspects of human hepatic drug glucuronidation in young children and adults. Gut 50(2):259–265

    CAS  PubMed  Google Scholar 

  330. Duanmu Z, Weckle A, Koukouritaki SB et al (2006) Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre- and postnatal human liver. J Pharmacol Exp Ther 316(3):1310–1317. doi:10.1124/jpet.105.093633

    CAS  PubMed  Google Scholar 

  331. Temellini A, Giuliani L, Pacifici GM (1991) Interindividual variability in the glucuronidation and sulphation of ethinyloestradiol in human liver. Br J Clin Pharmacol 31(6):661–664

    CAS  PubMed Central  PubMed  Google Scholar 

  332. Strange RC, Howie AF, Hume R et al (1989) The development expression of alpha-, mu- and pi-class glutathione S-transferases in human liver. Biochim Biophys Acta 993(2–3):186–190

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thummel, K.E., Lin, Y.S. (2014). Sources of Interindividual Variability. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics