Skip to main content

Principles and Experimental Considerations for In Vitro Transporter Interaction Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1113))

Abstract

Drug transporters are now universally acknowledged as important determinants of the absorption, distribution, metabolism and excretion of both endogenous and exogenous compounds. Altered transporter function, whether due to genetic polymorphism, DDIs, disease, or environmental factors such as dietary constituents, can result in changes in drug efficacy and/or toxicity due to changes in circulating or tissue levels of either drugs or endogenous substrates.

Prediction of whether and to what extent the biological fate of a drug is influenced by drug transporters, therefore, requires in vitro test systems that can accurately predict the risk and magnitude of clinical DDIs. While these in vitro assessments appear simple in theory, practitioners recognize that there are multiple factors that can influence experimental outcomes. A better understanding of these variables, including test compound characteristics, test systems, assay formats, and experimental design will enable clear, actionable steps and translatable outcomes that may avoid unnecessary downstream clinical engagement. This chapter will delineate the role of these variables in improving in vitro assay outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dresser MJ, Leabman MK, Giacomini KM (2001) Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J Pharm Sci 90:397–421

    Article  CAS  PubMed  Google Scholar 

  2. Kim RB (2000) Transporters in drug disposition. Curr Opin Drug Disc Dev 3:94–101

    CAS  Google Scholar 

  3. Venter CJ (2001) The sequence of the human genome. Science 291:1304

    Article  CAS  PubMed  Google Scholar 

  4. Muller M, Jansen PL (1997) Molecular aspects of hepatobiliary transport. Am J Physiol Gastrointes Liver Physiol 272:G1285–G1303

    CAS  Google Scholar 

  5. Koepsell H (1998) Organic cation transporters in intestine, kidney, liver and brain. Annu Rev Physiol 60:243–266

    Article  CAS  PubMed  Google Scholar 

  6. Meijer DK et al (1999) Transport mechanisms for cationic drugs and proteins in kidney, liver and intestine: implication for drug interactions and cell-specific drug delivery. Nephrol Dial Transplant 14:1–3

    Article  PubMed  Google Scholar 

  7. Suzuki H, Sugiyama Y (1999) Transporters for bile acids and organic anions. In: Sadee W, Amidon G (eds) Membrane transporters as drug targets. Kluwer Academic/Plenum Publishing Co, New York, pp 387–439

    Google Scholar 

  8. Inui K, Masuda S, Saito H (2000) Cellular and molecular aspects of drug transport in the kidney. Kidney Int 58:944–958

    Article  CAS  PubMed  Google Scholar 

  9. van Aubel RAMH, Masereeuw R, Russel FGM (2000) Molecular pharmacology of renal organic anion transporters. Am J Physiol Renal Physiol 279:F216–F232

    PubMed  Google Scholar 

  10. Gao B, Meier PJ (2001) Organic anion transport across the choroid plexus. Microsc Res Tech 52:60–64

    Article  CAS  PubMed  Google Scholar 

  11. Reuss L (2000) Basic mechanisms of ion transport. In: Seldin D, Giebisch G (eds) The kidney physiology and pathophysiology. Lippincott Williams & Wilkins, Baltimore, pp 85–106

    Google Scholar 

  12. Giacomini KM, Sugiyama Y (2005) In: Brunton L et al. (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw‐Hill, New York, pp 41–70

    Google Scholar 

  13. Goodman BE (2010) Insights into digestion and absorption of major nutrients in humans. Adv Physiol Educ 34:44–53

    Article  PubMed  Google Scholar 

  14. Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447:666–676

    Article  CAS  PubMed  Google Scholar 

  15. Anderle P (2009) Classification of human membrane transporters. In: Steffanson B, Brodin B, Nielsen CU (eds) Molecular biopharmaceutics. Aspects of drug characterization, drug delivery and dosage form evaluation. Pharmaceutical Press, London, UK

    Google Scholar 

  16. Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62(1):1–96

    Article  CAS  PubMed  Google Scholar 

  17. Sweet DH, Bush KT, Nigam SK (2001) The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Physiol Renal Physiol 281:F197–F205

    CAS  PubMed  Google Scholar 

  18. Wright SH, Dantzler WH (2004) Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 84(3):987–1049

    Article  CAS  PubMed  Google Scholar 

  19. Giacomini KM et al (2010) Membrane transporters in drug development. Nat Rev Drug Disc 9(3):215–236

    Article  CAS  Google Scholar 

  20. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  CAS  PubMed  Google Scholar 

  21. Doyle LA et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Rocchi E et al (2000) The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun 271:42–46

    Article  CAS  PubMed  Google Scholar 

  23. Didziapetris R et al (2003) Classification analysis of P-glycoprotein substrate specificity. J Drug Target 11(7):391–406

    Article  CAS  PubMed  Google Scholar 

  24. Jonker JW et al (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656

    Article  CAS  PubMed  Google Scholar 

  25. Hosomi A et al (2012) Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One 7(2):e30456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17(11):463–468

    Article  CAS  PubMed  Google Scholar 

  27. Gerloff T et al (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273:10046–10050

    Article  CAS  PubMed  Google Scholar 

  28. Strautnieks SS et al (1998) A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20:233–238

    Article  CAS  PubMed  Google Scholar 

  29. Hirano H et al (2006) High-speed screening and QSAR analysis of human ATP-binding cassette transporter ABCB11 (bile salt export pump) to predict drug-induced intrahepatic cholestasis. Mol Pharm 3(3):252–265

    Article  CAS  PubMed  Google Scholar 

  30. Morgan RE et al (2010) Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci 118(2):485–500

    Article  CAS  PubMed  Google Scholar 

  31. Shitara Y, Sato H, Sugiyama Y (2005) Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723

    Article  CAS  PubMed  Google Scholar 

  32. Kalliokoski A, Niemi M (2009) Impact of OATP transporters on pharmacokinetics. Br J Pharmacol 158(3):693–705

    Article  CAS  PubMed  Google Scholar 

  33. Burckhardt G, Wolff NA (2000) Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol 278:F853–F866

    CAS  PubMed  Google Scholar 

  34. DeGorter MK et al (2012) Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol 52:249–273

    Article  CAS  Google Scholar 

  35. Yonezawa A, Inui I (2011) Importance of the mulitdrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics, and pharmacogenomics. Br J Phaarmacol 164(7):1817–1825

    Article  CAS  Google Scholar 

  36. Tsuda M et al (2009) Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. JPET 329:185–191

    Article  CAS  Google Scholar 

  37. Kell DB, Dobson PD, Oliver SG (2011) Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 16(15–16):704–714

    Article  CAS  PubMed  Google Scholar 

  38. US Food and Drug Administration (2012) Draft guidance for industry: drug interaction studies—study design, data analysis, implications for dosing and labeling recommendations http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM292362.pdf

  39. European Medicines Agency (2012) Guideline on the investigation of drug interactions http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf

  40. Rege BD, Yu LX, Hussain AS, Polli JE (2001) Effect of common excipients on Caco-2 transport of low-permeability drugs. J Pharm Sci 90(11):1776–1786

    Article  CAS  PubMed  Google Scholar 

  41. Liu T et al (2010) The impact of protein on Caco-2 permeability of low mass balance compounds for absorption projection and efflux substrate identification. J Pharm Biomed Anal 51(5):1069–1077

    Article  CAS  PubMed  Google Scholar 

  42. Soars M et al (2009) Impact of hepatic uptake transporters on pharmacokinetic and drug–drug interactions: use of assays and models for decision making in the pharmaceutical industry. Mol Pharm 6(6):1662–1677

    Article  CAS  PubMed  Google Scholar 

  43. LeCluyse EL, Audus KL, Hochman JH (1994) Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am J Physiol 266:C1764–C1774

    CAS  PubMed  Google Scholar 

  44. LeCluyse E et al (2000) Expression and regulation of cytochrome P450 enzymes in primary cultures of human hepatocytes. J Biochem Mol Toxicol 14(4):177–188

    Article  CAS  PubMed  Google Scholar 

  45. Liu X et al (1999) Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am J Physiol 277:G12–G21

    CAS  PubMed  Google Scholar 

  46. Hoffmaster KA et al (2004) P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes: relevance to the hepatobiliary disposition of a model opioid peptide. Pharm Res 21:1294–1302

    Article  CAS  PubMed  Google Scholar 

  47. Liu X et al (1999) Use of Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes. J Pharmacol Exp Ther 289(3):1592–1599

    CAS  PubMed  Google Scholar 

  48. Fukuda H et al (2008) Effect of plasma protein binding on in vitro–in vivo correlation of biliary excretion of drugs evaluated by sandwich-cultured rat hepatocytes. Drug Metab Dispos 36(7):1275–1282

    Article  CAS  PubMed  Google Scholar 

  49. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    CAS  PubMed  Google Scholar 

  50. Hidalgo IJ (2001) Assessing the absorption of new pharmaceuticals. Curr Top Med Chem 1(5):385–401

    Article  CAS  PubMed  Google Scholar 

  51. Elsby R et al (2008) Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica 38(7–8):1140–1164

    Article  CAS  PubMed  Google Scholar 

  52. Gaush CR et al (1966) Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 122(3):931–935

    Article  CAS  PubMed  Google Scholar 

  53. Wang Q et al (2005) Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier. Int J Pharm 288(2):349–359

    Article  CAS  PubMed  Google Scholar 

  54. Hegedus C et al (2009) Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv Drug Deliv Rev 61:47–56

    Article  CAS  PubMed  Google Scholar 

  55. Keppler D, Jedlitschky G, Leier I (1998) Transport function and substrate specificity of multidrug resistance protein. Methods Enzymol 292:607–616

    Article  CAS  PubMed  Google Scholar 

  56. Ohtsu N et al (2007) Development of the alternative method for renal drug excretion using Xenopus oocyte expression system combined with a high throughput method, OOYCTEXPRESS ®. AATEX 14(Special Issue):669–671

    Google Scholar 

  57. Nozawa T et al (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolites, 7-ethyl-10hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dipos 33(3):434–439

    Article  CAS  Google Scholar 

  58. Pritchard JB, Miller DS (2005) Expression systems for cloned xenobiotic transporters. Toxicol Appl Pharmacol 204:256–262

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bhoopathy, S., Bode, C., Naageshwaran, V., Weiskircher-Hildebrandt, E.A., Hidalgo, I.J. (2014). Principles and Experimental Considerations for In Vitro Transporter Interaction Assays. In: Nagar, S., Argikar, U., Tweedie, D. (eds) Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, vol 1113. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-758-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-758-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-757-0

  • Online ISBN: 978-1-62703-758-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics