Skip to main content

Generation of Orthogonally Selective Bacterial Riboswitches by Targeted Mutagenesis and In Vivo Screening

  • Protocol
  • First Online:
Book cover Artificial Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

Riboswitches are naturally occurring RNA-based genetic switches that control gene expression in response to the binding of small-molecule ligands, typically through modulation of transcription or translation. Their simple mechanism of action and the expanding diversity of riboswitch classes make them attractive targets for the development of novel gene expression tools. The essential first step in realizing this potential is to generate artificial riboswitches that respond to nonnatural, synthetic ligands, thereby avoiding disruption of normal cellular function. Here we describe a strategy for engineering orthogonally selective riboswitches based on natural switches. The approach begins with saturation mutagenesis of the ligand-binding pocket of a naturally occurring riboswitch to generate a library of riboswitch mutants. These mutants are then screened in vivo against a synthetic compound library to identify functional riboswitch–ligand combinations. Promising riboswitch–ligand pairs are then further characterized both in vivo and in vitro. Using this method, a series of artificial riboswitches can be generated that are versatile synthetic biology tools for use in protein production, gene functional analysis, metabolic engineering, and other biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43:867–879

    Article  CAS  PubMed  Google Scholar 

  2. Serganov A, Nudler E (2012) A decade of riboswitches. Cell 152:17–24

    Article  Google Scholar 

  3. Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8:R239

    Article  PubMed Central  PubMed  Google Scholar 

  4. Codrea V, Hayner M, Hall B et al (2010) In vitro selection of RNA aptamers to a small molecule target. Curr Protoc Nucleic Acid Chem Chapter 9:Unit 9.5.1–5.23

    Google Scholar 

  5. Sharma V, Nomura Y, Yokobayashi Y (2008) Engineering complex riboswitch regulation by dual genetic selection. J Am Chem Soc 130:16310–16315

    Article  CAS  PubMed  Google Scholar 

  6. Lynch SA, Desai SK, Sajja HK et al (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Topp S, Gallivan JP (2008) Random walks to synthetic riboswitches-a high-throughput selection based on cell motility. Chembiochem 9:210–213

    Article  CAS  PubMed  Google Scholar 

  8. Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. Chembiochem 9:1906–1911

    Article  CAS  PubMed  Google Scholar 

  9. Lynch SA, Gallivan JP (2009) A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res 37:184–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dixon N, Duncan JN, Geerlings T et al (2010) Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A 107:2830–2835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Desai SK, Gallivan JP (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 126:13247–13254

    Article  CAS  PubMed  Google Scholar 

  12. Sinha J, Reyes SJ, Gallivan JP (2010) Reprogramming bacteria to seek and destroy an herbicide. Nat Chem Biol 6:464–470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Topp S, Reynoso CMK, Seeliger JC et al (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76:7881–7884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Reynoso CMK, Miller MA, Bina JE et al (2012) Riboswitches for intracellular study of genes involved in Francisella pathogenesis. MBio 3:e00253–00212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dixon N, Robinson CJ, Geerlings T et al (2012) Orthogonal riboswitches for tuneable coexpression in bacteria. Angew Chem Int Ed 51:3620–3624

    Article  CAS  Google Scholar 

  16. Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wachsmuth M, Findeiß S, Weissheimer N et al (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41:2541–2551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Link KH, Breaker RR (2009) Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther 16:1189–1201

    Article  CAS  PubMed  Google Scholar 

  19. Carothers JM, Oestreich SC, Szostak JW (2006) Aptamers selected for higher-affinity binding are not more specific for the target ligand. J Am Chem Soc 128:7929–7937

    Article  CAS  PubMed  Google Scholar 

  20. Johnson JE Jr, Reyes FE, Polaski JT et al (2012) B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492:133–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Peselis A, Serganov A (2012) Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. Nat Struct Mol Biol 19:1182–1184

    Article  CAS  PubMed  Google Scholar 

  22. Serganov A, Patel DJ (2012) Molecular recognition and function of riboswitches. Curr Opin Struct Biol 22:279–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Uhlenbeck OC (1995) Keeping RNA happy. RNA 1:4–6

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Gilbert SD, Batey RT (2009) Monitoring RNA-ligand interactions using isothermal titration calorimetry. Methods Mol Biol 540:97–114

    Article  CAS  PubMed  Google Scholar 

  25. Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47:198–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pikovskaya O, Serganov AA, Polonskaia A et al (2009) Preparation and crystallization of riboswitch-ligand complexes. Methods Mol Biol 540:115–128

    Article  CAS  PubMed  Google Scholar 

  27. Edwards AL, Garst AD, Batey RT (2009) Determining structures of RNA aptamers and riboswitches by X-ray crystallography. Methods Mol Biol 535:135–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Nomura Y, Yokobayashi Y (2007) Reengineering a natural riboswitch by dual genetic selection. J Am Chem Soc 129:13814–13815

    Article  CAS  PubMed  Google Scholar 

  29. Muranaka N, Sharma V, Nomura Y et al (2009) An efficient platform for genetic selection and screening of gene switches in Escherichia coli. Nucleic Acids Res 37:e39

    Article  PubMed Central  PubMed  Google Scholar 

  30. Muranaka N, Abe K, Yokobayashi Y (2009) Mechanism-guided library design and dual genetic selection of synthetic OFF riboswitches. Chembiochem 10:2375–2381

    Article  CAS  PubMed  Google Scholar 

  31. He B, Rong M, Lyakhov D et al (1997) Rapid mutagenesis and purification of phage RNA polymerases. Protein Expr Purif 9:142–151

    Article  CAS  PubMed  Google Scholar 

  32. Chronopoulou EG, Labrou NE (2011) Site-saturation mutagenesis: a powerful tool for structure-based design of combinatorial mutation libraries. Curr Protoc Protein Sci Chapter 26:Unit 26.6

    PubMed  Google Scholar 

  33. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67

    Article  CAS  PubMed  Google Scholar 

  34. Wakeman CA, Winkler WC (2009) Analysis of the RNA backbone: structural analysis of riboswitches by in-line probing and selective 2′-hydroxyl acylation and primer extension. Methods Mol Biol 540:173–191

    Article  CAS  PubMed  Google Scholar 

  35. Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    Article  CAS  PubMed  Google Scholar 

  36. Myszka DG, Abdiche YN, Arisaka F et al (2003) The ABRF-MIRG‘02 study: assembly state, thermodynamic, and kinetic analysis of an enzyme/inhibitor interaction. J Biomol Tech 14:247–269

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vincent, H.A., Robinson, C.J., Wu, MC., Dixon, N., Micklefield, J. (2014). Generation of Orthogonally Selective Bacterial Riboswitches by Targeted Mutagenesis and In Vivo Screening. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics