Skip to main content

Engineering Protein-Responsive mRNA Switch in Mammalian Cells

  • Protocol
  • First Online:
Artificial Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

Engineering of translation provides an alternative regulatory layer for controlling transgene expression in addition to transcriptional regulation. Synthetic mRNA switches that modulate translation of a target gene of interest in response to an intracellular protein could be a key regulator to construct a genetic circuit. Insertion of a protein binding RNA sequence in the 5′ UTR of mRNA would allow for the generation of a protein-responsive RNA switch. Here we describe the design principle of the switch and methods for tuning and analyzing its translational activity in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isaacs FJ, Dwyer DJ, Collins JJ (2006) RNA synthetic biology. Nat Biotechnol 24:545–554

    Article  CAS  PubMed  Google Scholar 

  2. Wieland M, Fussenegger M (2010) Ligand-dependent regulatory RNA parts for synthetic biology in eukaryotes. Curr Opin Biotechnol 21:760–765

    Article  CAS  PubMed  Google Scholar 

  3. Chang AL, Wolf JJ, Smolke CD (2012) Synthetic RNA switches as a tool for temporal and spatial control over gene expression. Curr Opin Biotechnol 23:679–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333:1244–1248

    Article  CAS  PubMed  Google Scholar 

  5. Ruder WC, Lu T, Collins JJ (2011) Synthetic biology moving into the clinic. Science 333:1248–1252

    Article  CAS  PubMed  Google Scholar 

  6. Wieland M, Fussenegger M (2012) Engineering molecular circuits using synthetic biology in mammalian cells. Annu Rev Chem Biomol Eng 3:209–234

    Article  CAS  PubMed  Google Scholar 

  7. Ausländer S, Ausländer D, Müller M et al (2012) Programmable single-cell mammalian biocomputers. Nature 487:123–127

    PubMed  Google Scholar 

  8. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  Google Scholar 

  9. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hentze MW, Kühn LC (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A 93:8175–8182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Stripecke R, Oliveira CC, McCarthy JE et al (1994) Proteins binding to 5′ untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol Cell Biol 14:5898–5909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Paraskeva E, Atzberger A, Hentze MW (1998) A translational repression assay procedure (TRAP) for RNA-protein interactions in vivo. Proc Natl Acad Sci U S A 95:951–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nie M, Htun H (2006) Different modes and potencies of translational repression by sequence-specific RNA-protein interaction at the 5′-UTR. Nucleic Acids Res 34:5528–5540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Saito H, Kobayashi T, Hara T et al (2010) Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol 6:71–78

    Article  CAS  PubMed  Google Scholar 

  15. Werstuck G, Green MR (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282:296–298

    Article  CAS  PubMed  Google Scholar 

  16. Endo K, Stapleton JA, Hayashi K et al (2013) Quantitative and simultaneous translational control of distinct mammalian mRNAs. Nucleic Acids Res. 41:e135

    Google Scholar 

  17. Imai Y, Matsushima Y, Sugimura T et al (1991) A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res 19:2785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hansson MD, Rzeznicka K, Rosenbäck M et al (2008) PCR-mediated deletion of plasmid DNA. Anal Biochem 375:373–375

    Article  CAS  PubMed  Google Scholar 

  19. Saito H, Fujita Y, Kashida S et al (2011) Synthetic human cell fate regulation by protein-driven RNA switches. Nat Commun 2:160

    Article  PubMed Central  PubMed  Google Scholar 

  20. Smith AM, Fuchs RT, Grundy FJ et al (2010) Riboswitch RNAs: regulation of gene expression by direct monitoring of a physiological signal. RNA Biol 7:104–110

    Article  CAS  PubMed  Google Scholar 

  21. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662

    Article  CAS  PubMed  Google Scholar 

  22. Stapleton JA, Endo K, Fujita Y et al (2012) Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition. ACS Synth Biol 1:83–88

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki Y, Ishihara D, Sasaki M et al (2000) Statistical analysis of the 5′ untranslated region of human mRNA using ‘Oligo-Capped’ cDNA libraries. Genomics 64:286–297

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Endo, K., Saito, H. (2014). Engineering Protein-Responsive mRNA Switch in Mammalian Cells. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics