Skip to main content

Tobacco Mosaic Virus Assembled High Aspect Ratio Surfaces

  • Protocol
  • First Online:
Virus Hybrids as Nanomaterials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1108))

Abstract

A modified version of the rod-shaped Tobacco Mosaic Virus (TMV1cys) provides a robust template for the self-assembly and fabrication of high-surface-area materials for numerous applications including batteries and sensors. TMV1cys surface fabrication is facilitated by the addition of a single cysteine residue to the virus coat protein that directs the vertical attachment of the virus particle onto substrate surfaces and enables deposition of functional inorganic layers. Here we describe the production and purification of the virus, its assembly onto suitable surfaces, and coating with metallic nickel and cobalt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas T, Young M (1998) Host guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  2. Dujardin E et al (2003) Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett 3(3):413–417

    Article  CAS  Google Scholar 

  3. Nam KT et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888

    Article  CAS  Google Scholar 

  4. Lee SY, Lim JS, Harris MT (2012) Synthesis and application of virus-based hybrid nanomaterials. Biotechnol Bioeng 109(1):16–30

    Article  CAS  Google Scholar 

  5. Shenton W et al (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Advan Mater 11(3):253–256

    Article  CAS  Google Scholar 

  6. Chiang CY et al (2007) Weaving genetically engineered functionality into mechanically robust virus fibers. Advan Mater 19:826–832

    Article  CAS  Google Scholar 

  7. Lim JS et al (2010) Biotemplated aqueous-phase palladium crystallization in the absence of external reducing agents. Nano lett 10(10): 3863–3867

    Article  CAS  Google Scholar 

  8. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312(5775): 873–875

    Article  CAS  Google Scholar 

  9. Pattanayek R, Stubbs G (1992) Structure of the U2 strain of tobacco mosaic virus refined at 3.5 A resolution using X-ray fiber diffraction. J Mol Biol 228(2):516–528

    Article  CAS  Google Scholar 

  10. Smith ML et al (2009) Display of peptides on the surface of tobacco mosaic virus particles. Curr Top Microbiol Immunol 332:13–31

    Article  CAS  Google Scholar 

  11. Royston E et al (2008) Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir 24(3):906–912

    Article  CAS  Google Scholar 

  12. Chen XL et al (2011) High rate performance of virus enabled 3D n-type Si anodes for lithium-ion batteries. Electrochim Acta 56(14): 5210–5213

    Article  CAS  Google Scholar 

  13. Chen XL et al (2011) A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater 21(2):380–387

    Article  CAS  Google Scholar 

  14. Chen XL et al (2010) Virus-enabled silicon anode for lithium-ion batteries. ACS Nano 4(9):5366–5372

    Article  CAS  Google Scholar 

  15. Srinivasan K et al (2005) Nanomaterials sensing layer based surface acoustic wave hydrogen sensors. In: IEEE ultrasonics symposium

    Google Scholar 

  16. McCarthy M, Enright R, Gerasopoulos K, Culver J, Ghodssi R, Wang EN (2010) Biomimetic superhydrophobic surfaces using viral nanotemplates for self-cleaning and dropwise condensation. In: Solid-state sensor, actuator, and microsystems workshop, Hilton Head Island, SC

    Google Scholar 

  17. McCarthy M, Gerasopoulos K, Enright R, Culver J, Ghodssi R, Wang EN (2012) Biotemplated hierarchical surfaces and the role of dual length scales on the repellency of impacting droplets. Appl Phys Lett 100: 263701

    Article  Google Scholar 

  18. Gooding GV, Hebert TT (1967) A simple technique for the purification of tobacco mosaic virus in large quantities. Phytopathology 57(11):1285

    Google Scholar 

  19. Ghosh A et al (2012) Virus-assembled flexible electrode-electrolyte interfaces for enhanced polymer-based battery applications. J Nano Mat 2012:6

    Google Scholar 

  20. Zaitlin M, Israel HW (1975) Tobacco mosaic virus. CMI/AAB 151:1–5

    Google Scholar 

  21. Freifelder D (1982) Physical biochemistry: applications to biochemistry and molecular biology. W.H. Freeman, San Francisco

    Google Scholar 

Download references

Acknowledgement

This work was supported by Biochemistry Program of the Army Research Office award W911NF1110138.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Brown, A.D., Culver, J.N. (2014). Tobacco Mosaic Virus Assembled High Aspect Ratio Surfaces. In: Lin, B., Ratna, B. (eds) Virus Hybrids as Nanomaterials. Methods in Molecular Biology, vol 1108. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-751-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-751-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-750-1

  • Online ISBN: 978-1-62703-751-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics