Skip to main content

Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1108))

Abstract

Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360

    Article  CAS  Google Scholar 

  2. Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C-X, Lam KS (2007) From combinatorial chemistry to cancer-targeting peptides. Mol Pharm 4:631–651

    Article  CAS  Google Scholar 

  3. Cho CF, Ablack A, Leong HS, Zijlstra A, Lewis J (2011) Evaluation of nanoparticle uptake in tumors in real time using intravital imaging. J Vis Exp 52:e2808

    Google Scholar 

  4. Cho CF, Amadei GA, Breadner D, Luyt LG, Lewis J (2012) The discovery of novel integrin ligands from combinatorial libraries using a multiplex “beads on a bead” approach. Nano Lett 12:5957–65

    Article  CAS  Google Scholar 

  5. Steinmetz NF, Cho CF, Ablack A, Lewis JD, Manchester M (2011) Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond) 6:351–364

    Article  CAS  Google Scholar 

  6. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  Google Scholar 

  7. Leong HS, Steinmetz NF, Ablack A, Destito G, Zijlstra A, Stuhlmann H, Manchester M, Lewis JD (2010) Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc 5:1406–1417

    Article  CAS  Google Scholar 

  8. Steinmetz NF, Ablack AL, Hickey JL, Ablack J, Manocha B, Mymryk JS, Luyt LG, Lewis JD (2011) Intravital imaging of human prostate cancer using viral nanoparticles targeted to gastrin-releasing peptide receptors. Small 7:1664–1672

    Article  CAS  Google Scholar 

  9. Chatterji A, Ochoa WF, Paine M, Ratna BR, Johnson JE, Lin T (2004) New addresses on an addressable virus nanoblock; uniquely reactive Lys residues on cowpea mosaic virus. Chem Biol 11:855–863

    Article  CAS  Google Scholar 

  10. Brunel FM, Lewis JD, Destito G, Steinmetz NF, Manchester M, Stuhlmann H, Dawson PE (2010) Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. Nano Lett 10:1093–1097

    Article  CAS  Google Scholar 

  11. Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120:41–50

    Article  CAS  Google Scholar 

  12. Medintz IL, Sapsford KE, Konnert JH, Chatterji A, Lin T, Johnson JE, Mattoussi H (2005) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21(12):5501–5510

    Article  CAS  Google Scholar 

  13. Sapsford KE, Soto CM, Blum AS, Chatterji A, Lin T, Johnson JE, Ligler FS, Ratna BR (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21(8):1668–1673

    Article  CAS  Google Scholar 

  14. Destito G, Yeh R, Rae CS, Finn MG, Manchester M (2007) Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 14:1152–1162

    Article  CAS  Google Scholar 

  15. Steinmetz NF, Manchester M (2009) PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules 10: 784–792

    Article  CAS  Google Scholar 

  16. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021

    Article  CAS  Google Scholar 

  17. Li ZJ, Cho CH (2012) Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 10(Suppl 1):1

    Article  Google Scholar 

  18. Neveu C, Lefranc B, Tasseau O, Do-Rego JC, Bourmaud A, Chan P, Bauchat P, Le Marec O, Chuquet J, Guilhaudis L, Boutin JA, Segalas-Milazzo I, Costentin J, Vaudry H, Baudy-Floc'h M, Vaudry D, Leprince J (2012) Rational design of a low molecular weight, stable, potent, and long-lasting GPR103 aza-beta3-pseudopeptide agonist. J Med Chem 55(17):7516–7524

    Article  CAS  Google Scholar 

  19. Auzzas L, Zanardi F, Battistini L, Burreddu P, Carta P, Rassu G, Curti C, Casiraghi G (2010) Targeting alphavbeta3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem 17(13):1255–1299

    Article  CAS  Google Scholar 

  20. Devlin JJ, Panganiban LC, Devlin PE (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249(4967):404–406

    Article  CAS  Google Scholar 

  21. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84

    Article  CAS  Google Scholar 

  22. Cretu A, Fotos JS, Little BW, Galileo DS (2005) Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis 22(3):225–236

    Article  Google Scholar 

  23. Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP (2008) The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell 13(3):221–234

    Article  CAS  Google Scholar 

  24. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, New York, p 288

    Google Scholar 

  25. Leong HS, Chambers AF, Lewis JD (2012) Assessing cancer cell migration and metastatic growth in vivo in the chick embryo using fluorescence intravital imaging. Methods Mol Biol 872:1–14

    Article  CAS  Google Scholar 

  26. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Prostate Cancer Canada Grant #2011-742 to JDL, Natural Sciences and Engineering Research Council of Canada (NSERC) grant #326972 to LGL, and NIH/NIBIB grant R00 EB009105 and Mt. Sinai Foundation to NFS. All experiments were performed in accordance with the regulations and guidelines of the Institutional Animal Care and Use Committee at Case Western Reserve University and at the University of Alberta. We thank Desmond Pink for his photography.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Cho, CF., Shukla, S., Simpson, E.J., Steinmetz, N.F., Luyt, L.G., Lewis, J.D. (2014). Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer. In: Lin, B., Ratna, B. (eds) Virus Hybrids as Nanomaterials. Methods in Molecular Biology, vol 1108. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-751-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-751-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-750-1

  • Online ISBN: 978-1-62703-751-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics