Skip to main content

Master Regulators of Posttranscriptional Gene Expression Are Subject to Regulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1107))

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs of 17–25 nt in length that control gene expression posttranscriptionally. As master regulators of posttranscriptional gene expression, miRNAs themselves are subject to tight regulation at multiple steps. The most common mechanisms include miRNA transcription, processing, and localization. Additionally, intricate feedback loops between miRNAs and transcription factors result in unidirectional, reciprocal, or self-directed elegant control mechanisms. In this chapter, we focus on the posttranscriptional regulatory mechanisms that generate miRNAs whose sequence might be slightly different from the miRNA-coding sequences. Hopefully, this information will be helpful in the discovery of novel miRNAs as well as in the analysis of deep-sequencing data and ab initio prediction of miRNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee Y, Feinbaum RL, Ambros V (1993) The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  2. Bushati N, Cohen SM (2007) Micro RNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  PubMed  CAS  Google Scholar 

  3. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  4. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  PubMed  CAS  Google Scholar 

  5. Lai EC, Tomancak P, Williams RW et al (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4:R42

    Article  PubMed  Google Scholar 

  6. Lim LP, Glasner ME, Yekta S et al (2003) Vertebrate microRNA genes. Science 299:1540

    Article  PubMed  CAS  Google Scholar 

  7. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighbouring miRNAs and host genes. RNA 11:241–247

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez A, Griffiths JS, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  9. Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26:775–783

    Article  PubMed  CAS  Google Scholar 

  10. Lau NC, Lim LP, Weinstein EG et al (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  11. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  PubMed  CAS  Google Scholar 

  12. Morlando M, Ballarino M, Gromak N et al (2008) Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15:902–909

    Article  PubMed  CAS  Google Scholar 

  13. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  14. Ozsolak F, Poling LL, Wang Z et al (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183

    Article  PubMed  CAS  Google Scholar 

  15. Corcoran DL, Pandit KV, Gordon B et al (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4:e5279

    Article  PubMed  Google Scholar 

  16. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  Google Scholar 

  17. Susanne ER, Petr VN, Demetra P et al (2012) RNA Biol 9:978–989

    Article  Google Scholar 

  18. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    PubMed  CAS  Google Scholar 

  19. Kim J, Inoue K, Ishii J et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  PubMed  CAS  Google Scholar 

  20. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561

    Article  PubMed  CAS  Google Scholar 

  21. Nasser MW, Datta J, Nuovo G et al (2008) Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin induced apoptosis by miR-1. J Biol Chem 283:33394–33405

    Article  PubMed  CAS  Google Scholar 

  22. Saito Y, Liang G, Egger G et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  PubMed  CAS  Google Scholar 

  23. Gregory RI, Yan KP, Amuthan G et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  24. Fukuda T, Yamagata K, Fujiyama S et al (2007) DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 9:604–611

    Article  PubMed  CAS  Google Scholar 

  25. Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  26. Han JJ, Lee Y, Yeom KH et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  PubMed  CAS  Google Scholar 

  27. Chiang HR, Schoenfeld LW, Ruby JG et al (2010) Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 24:992–1009

    Article  PubMed  CAS  Google Scholar 

  28. Yi R, Qin Y, Macara IG et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hair pin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  29. Bohnsack MT, Czaplinski K, Gorlich D (2005) Exportin 5 is a RanGPT-dependent dsRNA binding protein that mediates nuclear export of pre-microRNAs. RNA 10:185–191

    Article  Google Scholar 

  30. Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:1959

    Article  Google Scholar 

  31. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785

    Article  PubMed  CAS  Google Scholar 

  32. Lee EJ, Baek M, Gusev Y et al (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines and tumors. RNA 14:35–42

    Article  PubMed  CAS  Google Scholar 

  33. Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  PubMed  CAS  Google Scholar 

  34. Haase JP, Piskounova E, Gregory RI (2009) Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 16:1021–1025

    Article  Google Scholar 

  35. Lee Y, Hur I, Park SY et al (2006) The role of PACT in the RNA silencing pathway. EMBO J 25:522–532

    Article  PubMed  CAS  Google Scholar 

  36. Michael MZ, O’Connor SM, van Holst Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  37. Obernosterer G, Leuschner PJ, Alenius M et al (2006) Post-transcriptional regulation of microRNA expression. RNA 12:1161–1167

    Article  PubMed  CAS  Google Scholar 

  38. Paroo Z, Ye X, Chen S et al (2009) Phosphorylation of the human microRNA generating complex mediates MAPK/Erk signalling. Cell 139:112–122

    Article  PubMed  CAS  Google Scholar 

  39. Viswanathan SR, Daley GQ (2010) Lin28: a microRNA regulator with a macro role. Cell 140:445–459

    Article  PubMed  CAS  Google Scholar 

  40. Grelier G, Voirin N, Ay S et al (2009) Prognostic value of Dicer expression in human breast cancers and association with the mesenchymal phenotype. Br J Cancer 101:673–683

    Article  PubMed  CAS  Google Scholar 

  41. Martello G, Rosato A, Ferrari F et al (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  PubMed  CAS  Google Scholar 

  42. Ma E, MacRae IJ, Kirsch JF et al (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380:237–243

    Article  PubMed  CAS  Google Scholar 

  43. Jin Y, Zhang W, Li Q (2009) Origins and evolution of ADAR-mediated RNA editing. IUBMB Life 61:572–578

    Article  PubMed  CAS  Google Scholar 

  44. Luciano DJ, Mirsky H, Vendetti NJ et al (2004) RNA editing of a miRNA precursor. RNA 10:1174–1177

    Article  PubMed  CAS  Google Scholar 

  45. Yang W, Chendrimada TP, Wang Q et al (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13–21

    Article  PubMed  CAS  Google Scholar 

  46. Kawahara Y, Zinshteyn B, Chenrimada TP et al (2007) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep 8:763–769

    Article  PubMed  CAS  Google Scholar 

  47. Kawahara Y, Megraw M, Krieder E et al (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280

    Article  PubMed  CAS  Google Scholar 

  48. Chavali PL, Funa K, Chavali S (2011) Cis-regulation of microRNA expression by scaffold/matrix-attachment regions. Nucleic Acids Res 39:6908–6918

    Article  PubMed  CAS  Google Scholar 

  49. Cheng HY (2007) MicroRNA modulation of circadian-clock period and entrainment. Neuron 54:813–829

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Scientific and Technical Research Council of Turkey (104T144, 107T475, and 210T006 to BA).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hamid, S.M., Akgül, B. (2014). Master Regulators of Posttranscriptional Gene Expression Are Subject to Regulation. In: Yousef, M., Allmer, J. (eds) miRNomics: MicroRNA Biology and Computational Analysis. Methods in Molecular Biology, vol 1107. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-748-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-748-8_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-747-1

  • Online ISBN: 978-1-62703-748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics