Skip to main content

Phenotyping UDP-Glucuronosyltransferases (UGTs) Involved in Human Drug Metabolism: An Update

  • Protocol
  • First Online:
Book cover Optimization in Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 2779 Accesses

Abstract

Glucuronidation, catalyzed by the UDP-glucuronosyltransferases (UGT), is a major drug clearance mechanism in humans and other mammalian species. UGT reaction phenotyping involves determining which of the 19 known human UGTs are primarily responsible for glucuronidation of a particular drug. This approach is commonly used during the drug development process for drugs that are clearly primarily by glucuronidation, thereby enabling rational predictions of potential drug interactions and pharmacogenomic variation. An integrated approach to phenotyping is described using recombinant expressed UGTs, comparative enzyme kinetic analysis, correlations with UGT selective probe activities, relative activity factor normalization, and chemical inhibition. Updated protocols are provided that overcome several newly discovered model limitations, including endogenous fatty acid inhibition of UGT2B7 and UGT1A9 activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Court MH (2010) Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug Metab Rev 42(1):209

    Article  PubMed  CAS  Google Scholar 

  2. Meech R, Miners JO, Lewis BC, Mackenzie PI (2012) The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol Ther 134(2):200–218

    Article  PubMed  CAS  Google Scholar 

  3. Miners JO, Mackenzie PI, Knights KM (2010) The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab Rev 42(1):196–208

    Article  PubMed  CAS  Google Scholar 

  4. Court MH, Zhang X, Ding X, Yee KK, Hesse LM, Finel M (2012) Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiotica 42(3):266

    Article  PubMed  CAS  Google Scholar 

  5. Harper TW, Brassil PJ (2008) Reaction phenotyping: current industry efforts to identify enzymes responsible for metabolizing drug candidates. AAPS J 10(1):200–207

    Article  PubMed  CAS  Google Scholar 

  6. Zhang H, Davis CD, Sinz MW, Rodrigues AD (2007) Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opin Drug Metab Toxicol 3(5):667–687

    Article  PubMed  CAS  Google Scholar 

  7. Venkatakrishnan K, Von Moltke LL, Greenblatt DJ (2001) Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J Clin Pharmacol 41(11):1149

    Article  PubMed  CAS  Google Scholar 

  8. Rodrigues AD (1999) Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem Pharmacol 57(5):465–480

    Article  PubMed  CAS  Google Scholar 

  9. Fisher MB, Paine MF, Strelevitz TJ, Wrighton SA (2001) The role of hepatic and extrahepatic UDP-glucuronosyltransferases in human drug metabolism. Drug Metab Rev 33(3–4):273–297

    Article  PubMed  CAS  Google Scholar 

  10. Hirata-Koizumi M, Saito M, Miyake S, Hasegawa R (2007) Adverse events caused by drug interactions involving glucuronoconjugates of zidovudine, valproic acid and lamotrigine, and analysis of how such potential events are discussed in package inserts of Japan, UK and USA. J Clin Pharm Ther 32(2):177–185

    Article  PubMed  CAS  Google Scholar 

  11. Marsh S, Hoskins JM (2010) Irinotecan pharmacogenomics. Pharmacogenomics 11(7):1003–1010

    Article  PubMed  CAS  Google Scholar 

  12. Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG (2005) In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos 33(11):1729–1739

    Article  PubMed  CAS  Google Scholar 

  13. Soars MG, Mattiuz EL, Jackson DA, Kulanthaivel P, Ehlhardt WJ, Wrighton SA (2002) Biosynthesis of drug glucuronides for use as authentic standards. J Pharmacol Toxicol Methods 47(3):161–168

    Article  PubMed  CAS  Google Scholar 

  14. Walsky RL, Bauman JN, Bourcier K, Giddens G, Lapham K, Negahban A, Ryder TF, Obach RS, Hyland R, Goosen TC (2012) Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab Dispos 40(5):1051–1065

    Article  PubMed  CAS  Google Scholar 

  15. Oleson L, Court MH (2008) Effect of the beta-glucuronidase inhibitor saccharolactone on glucuronidation by human tissue microsomes and recombinant UDP-glucuronosyltransferases. J Pharm Pharmacol 60(9):1175

    Article  PubMed  CAS  Google Scholar 

  16. Turgeon D, Chouinard S, Belanger P, Picard S, Labbe JF, Borgeat P, Belanger A (2003) Glucuronidation of arachidonic and linoleic acid metabolites by human UDP-glucuronosyltransferases. J Lipid Res 44(6):1182–1191

    Article  PubMed  CAS  Google Scholar 

  17. Levesque E, Turgeon D, Carrier JS, Montminy V, Beaulieu M, Belanger A (2001) Isolation and characterization of the UGT2B28 cDNA encoding a novel human steroid conjugating UDP-glucuronosyltransferase. Biochemistry 40(13):3869–3881

    Article  PubMed  CAS  Google Scholar 

  18. Court MH, Hazarika S, Krishnaswamy S, Finel M, Williams JA (2008) Novel polymorphic human UDP-glucuronosyltransferase 2A3: cloning, functional characterization of enzyme variants, comparative tissue expression, and gene induction. Mol Pharmacol 74(3):744

    Article  PubMed  CAS  Google Scholar 

  19. Krishnaswamy S, Duan SX, Von Moltke LL, Greenblatt DJ, Court MH (2003) Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos 31(1):133

    Article  PubMed  CAS  Google Scholar 

  20. Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T (2012) Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 40(1):83–92

    Article  PubMed  CAS  Google Scholar 

  21. Kato Y, Nakajima M, Oda S, Fukami T, Yokoi T (2012) Human UDP-glucuronosyltransferase isoforms involved in haloperidol glucuronidation and quantitative estimation of their contribution. Drug Metab Dispos 40(2):240–248

    Article  PubMed  CAS  Google Scholar 

  22. Zhu L, Ge G, Zhang H, Liu H, He G, Liang S, Zhang Y, Fang Z, Dong P, Finel M, Yang L (2012) Characterization of hepatic and intestinal glucuronidation of magnolol: application of the relative activity factor approach to decipher the contributions of multiple UDP-glucuronosyltransferase isoforms. Drug Metab Dispos 40(3):529–538

    Article  PubMed  CAS  Google Scholar 

  23. Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2001) Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate. J Pharmacol Exp Ther 297(1):326–337

    PubMed  CAS  Google Scholar 

  24. Rowland A, Gaganis P, Elliot DJ, Mackenzie PI, Knights KM, Miners JO (2007) Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation. J Pharmacol Exp Ther 321(1):137–147

    Article  PubMed  CAS  Google Scholar 

  25. Rowland A, Knights KM, Mackenzie PI, Miners JO (2008) The “albumin effect” and drug glucuronidation: bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos 36(6):1056–1062

    Article  PubMed  CAS  Google Scholar 

  26. Uchaipichat V, Mackenzie PI, Elliot DJ, Miners JO (2006) Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases. Drug Metab Dispos 34(3):449–456

    PubMed  CAS  Google Scholar 

  27. Miners JO, Bowalgaha K, Elliot DJ, Baranczewski P, Knights KM (2011) Characterization of niflumic acid as a selective inhibitor of human liver microsomal UDP-glucuronosyltransferase 1A9: application to the reaction phenotyping of acetaminophen glucuronidation. Drug Metab Dispos 39(4):644–652

    Article  PubMed  CAS  Google Scholar 

  28. Fujiwara R, Nakajima M, Yamanaka H, Katoh M, Yokoi T (2008) Product inhibition of UDP-glucuronosyltransferase (UGT) enzymes by UDP obfuscates the inhibitory effects of UGT substrates. Drug Metab Dispos 36(2):361–367

    Article  PubMed  CAS  Google Scholar 

  29. Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, Greenblatt DJ (2003) Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31(9):1125

    Article  PubMed  CAS  Google Scholar 

  30. Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, Greenblatt DJ (2002) Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 30(11):1257

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Court, M.H. (2014). Phenotyping UDP-Glucuronosyltransferases (UGTs) Involved in Human Drug Metabolism: An Update. In: Caldwell, G., Yan, Z. (eds) Optimization in Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-742-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-742-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-741-9

  • Online ISBN: 978-1-62703-742-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics